2016年课题参考资料.pdf
First draft // August 30, 2015 Preparation to the Young Physicists’ Tournaments’ 2016 Ilya Martchenko, 1 * Matej Badin, 2 Reza Montazeri Namin, 3 and Andrei Schetnikov 4 1 University of Fribourg; 2 Comenius University in Bratislava; 3 Sharif University of Technology; 4 Pythagoras School, Novosibirsk 10 years with the Reference kit! 170 problems Over ⅓ of all IYPTs 1988―2016 An amazing team of co-authors (since 2012) On the Regulations of a few national tournaments A successful case of knowledge transfer A true asset of the IYPT portfolio The Day One was September 29, 2006 Welcome to the 4th IYNT 2016! The International Young Naturalists' Tournament, IYNT, is a whole new competition with breathtaking problems, state-of-the-art grading standards, and an impressive momentum The IYNT bridges gaps between natural sciences and is focused on participants aged 12 through 16 The IYNT has so far attracted 31 teams from 14 different countries, and has awarded 21 medals Do not hesitate and pre-register today http://iynt.org Do you like what the IYPT organizers do? Watch the promo video: http://youtu.be/O51W8D-qeiA Follow @iypt and @iyptarchive on Twitter iypt How to tackle the IYPT problems? How to structure a report? What level is competitive? How to set the goals, fix the priorities, and set the direction of the work? How were people resolving particular issues in the past? Look through the historical solutions in the Archive :-) an opportunity for goal-oriented critical learning examples, not guidelines those solutions were good, but yours should be better! Invitation Contact Ilya Martchenko IYPT Treasurer The IYPT is seeking for sponsors If you do not donate today, another project of the IYPT will be put on hold Being a supporter of the IYPT offers unique publicity, powerful rewards, and much more ilya.martchenko@iypt.org IBAN CH81 0900 0000 9133 0878 4 BIC POFICHBEXXX Discover the exciting opportunities at http://iypt.org/Sponsors Is the novel research limited and discouraged by the existing common knowledge and the ongoing work of competing groups? :-) Thank you for reminders, IYPT Memes :-) July 29, 2015 August 16, 2015 Call for cooperation If you are interested in the idea behind the Kit — to structure the earlier knowledge about the physics behind the problems and to encourage students to contrast their personal contribution from the existing knowledge — your cooperation is welcome If more contributors join the work on the Kit for 2016, or plan bringing together the Kit for 2017, good editions may be completed earlier It would be of benefit for everybody, students and team leaders, who would have an early reference (providing a first impetus to the work) and a strong warning that IYPT is all about appropriate, novel research, and not about “re-inventing the wheel” jurors, who would have a brief, informal supporting material, possibly making them more skeptical and objective about the presentations the audience outside the IYPT, who benefits from the structured references in e.g. physics popularization activities and physics teaching the IYPT, as a community and a center of competence, that generates vibrant, state-ofthe-art research problems, widely used in other activities and at other events and also the author (-s) of the Kit, who could rapidly acquire a competence for the future activities and have a great learning experience * // The epigraph for the IYPT 2016 problems approved by the IYPT Founder Evgeny Yunosov // Translated from the German * “It is much easier to recognize error than to find truth.” Goethe Problem No. 1 “Invent yourself” Truly random numbers are a very valuable and rare resource. Design, produce, and test a mechanical device for producing random numbers. Analyse to what extent the randomness produced is safe against tampering. Background reading Wikipedia: Random number generation, https://en.wikipedia.org/wiki/Random_number_generation Wikipedia: Hardware random number generator, https://en.wikipedia.org/wiki/Hardware_random_number_generator Wikipedia: Diehard tests, https://en.wikipedia.org/wiki/Diehard_tests Wikipedia: Randomness tests, https://en.wikipedia.org/wiki/Randomness_tests Dan Biebighauser. Testing Random Number Generators (Univ. of Minnesota, 2000), http://math.umn.edu/~garrett/students/reu/pRNGs.pdf Henri Poincaré. Science et methode (Paris, Flammarion, 1908), http://jubilotheque.upmc.fr/fondsphyschim/PC_000305_001/document.pdf?name=PC_000305_001_pdf.pdf Joseph Ford. How random is a coin toss. Physics Today 36, 4, 40-47 (1983), http://sites.utexas.edu/ncc/files/2013/02/Ford83.pdf S. K. Park and K. W. Miller. Random number generators: good ones are hard to find. Comm. ACM 31,10, 1192-1201 (1988), http://www.chemie.unibas.ch/~steinhauser/teaching/FS2014/AdvancedMethInCompSci/MC_LectureHan dout_2.pdf M. P. A. Clark and Brian D. Westerberg. How random is the toss of a coin? Can. Med. Ass. J. 181, 12, E306-E308 (2009), http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789164/ I. Vattulainen, T. Ala-Nissila, and K. Kankaala. Physical tests for random numbers in simulations. Phys. Rev. Lett. 73, 19, 2513 (1994), arXiv:cond-mat/9406054 [bronze_eye 2015] Problem No. 2 “Lagging pendulum” A pendulum consists of a strong thread and a bob. When the pivot of the pendulum starts moving along a horizontal circumference, the bob starts tracing a circle which can have a smaller radius, under certain conditions. Investigate the motion and stable trajectories of the bob. Background reading Wikipedia: Conical pendulum, https://en.wikipedia.org/wiki/Conical_pendulum B. Horton, J. Sieber, J. M. T. Thompson, and M. Wiercigroch. Dynamics of the nearly parametric pendulum. Int. J. Non-Linear Mech. 46, 2, 436–442 (2011), arXiv:0803.1662v3 [math.DS] Tom Duncan. Advanced Physics (John Murray, 2000), Fig. 25.33, http://www.internetarchaeology.org/www.geocities.com/Templarser/chaos.html J. L. Trueba, J. P. Baltan, and M. A. F. Sanjuán. A generalized perturbed pendulum. Chaos, Solitons and Fractals 15, 911-924 (2003), http://www.escet.urjc.es/~fisica/investigacion/publications/Papers/2003/genpen.pdf R. V. Dooren. Chaos in a pendulum with forced horizontal support motion: a tutorial. Chaos, Solitons and Fractals 7, 77-90 (1996) O. V. Kholostova. Some problems of the motion of a pendulum when there are horizontal vibrations of the point of suspension. Journal of Applied Mathematics and Mechanics 59, 553-561 (1995) Y. Liang and B. F. Feeny. Parametric Identification of a Base-Excited Single Pendulum. Nonlinear Dynamics 46, 1, 17-29 (2006), http://www.egr.msu.edu/~feeny/LiangFeenyND2006.pdf Richard Fitzpatrick. The conical pendulum (farside.ph.utexas.edu, 2006), http://farside.ph.utexas.edu/teaching/301/lectures/node88.html A. O. Belyakov. On rotational solutions for elliptically excited pendulum. Phys. Lett. A 375, 25, 25242530 (2011), arXiv:1101.0062 [math-ph] Randall Douglas Peters. Example Pendula (physics.mercer.edu), http://physics.mercer.edu/petepag/pend.htm Background reading Erik Mahieu. Pendulum with Rotating Pivot (demonstrations.wolfram.com), http://demonstrations.wolfram.com/PendulumWithRotatingPivot/ Eugene I. Butikov. Subharmonic resonances of the parametrically driven pendulum (butikov.faculty.ifmo.ru), http://butikov.faculty.ifmo.ru/Subresonances.pdf Michael Hart. The driven pendulum (maths.surrey.ac.uk, 2004), http://www.maths.surrey.ac.uk/explore/michaelspages/documentation/Driven W. T. Grandy. Simulations of nonlinear pivot-driven pendula. Am. J. Phys. 65, 5, 376-381 (1997) Eugene I. Butikov. Nonlinear Oscillations package, http://butikov.faculty.ifmo.ru/Nonlinear/Nonlinear.zip G. Gonzalez. A pendulum with moving support point (2006), http://www.phys.lsu.edu/faculty/gonzalez/Teaching/Phys7221/PendulumWithMovingSupport.pdf S. W. Shaw and S. Wiggins. Chaotic dynamics of a whirling pendulum. Physica D: Nonlin. Phen. 31, 190–211 (1988), http://www.researchgate.net/publication/223696347_Chaotic_dynamics_of_a_whirling_pendulum D. Bolster, R. E. Hershberger, R. J. Donnelly. Oscillating pendulum decay by emission of vortex rings. Phys. Rev. E 81, 046317 (2010), http://www3.nd.edu/~bolster/Diogo_Bolster/Research_6__Vortex_Rings_files/21%20-%20Pendulum.pdf R. A. Nelson, M. G. Olsson. The pendulum - Rich physics from a simple system. Am. J. Phys. 54, 2 (1986), http://www.pas.rochester.edu/~badolato/PHY_123/Resources_files/The%20pendulum%20%20Rich%20physics%20from%20a%20simple%20system.pdf E. K. Dunn. The Effect of String Drag on a Pendulum (Univ. of Kansas, Physics Dept., 2012), http://people.ku.edu/~matt915/projects/papers/PendulumDrag.pdf [Fink 1994] Problem No. 3 “Acoustic lens” Fresnel lenses with concentric rings are widely used in optical applications, however a similar principle can be used to focus acoustic waves. Design and produce an acoustic lens and investigate its properties, such as amplification, as a function of relevant parameters. Background reading Wikipedia: Fresnel lens, https://en.wikipedia.org/wiki/Fresnel_lens Wikipedia: Zone plate, https://en.wikipedia.org/wiki/Zone_plate Wikipedia:Fabry–Pérot interferometer, https://en.wikipedia.org/wiki/Fabry%E2%80%93P %C3%A9rot_interferometer M. Molerуn, M. Serra-Garcia, C. Daraio. Acoustic Fresnel lenses with extraordinary transmission. Appl. Phys. Lett. 105, 114109 (2014), http://www.mechmat.ethz.ch/publications/Acoustic%20Fresnel.pdf Y. Yamada and T. Teruo. Fresnel Lens of Sound (Nagoya City Science Museum), http://www.ncsm.city.nagoya.jp/cgi-bin/en/exhibition_guide/exhibit.cgi? id=S406&key=F&keyword=Fresnel%20lens W. E. Kock and F. K. Harvey. Refracting sound waves. J. Acoust. Soc. Am. 21, 471–481 (1949) W. J. Toulis. Acoustic focusing with spherical structures. J. Acoust. Soc. Am. 35, 286–292 (1963) L. A. A. Warnes. The use of antiphased zones in an acoustic Fresnel lens for a scanning sonar transmitter. Ultrasonics 20, 4, 184-188 (1982) B. Hadimioglu, E.G. Rawson, R. Lujan, M. Lim, B.T. Khuri-Yakub, and C.F. Quate. High-efficiency Fresnel acoustic lenses. Ultrasonics Symposium, IEEE Proc. 1, 579-582 (1993), http://wwwkyg.stanford.edu/khuriyakub/opencms/Downloads/93_Hadimioglu_01.pdf L. Sanchis, A. Yánez, P. L. Galindo, J. Pizarro, and J. M. Pastor. Three-dimensional acoustic lenses with axial symmetry. Appl. Phys. Lett. 97, 054103 (2010), http://www.researchgate.net/publication/232602649_Threedimensional_acoustic_lenses_with_axial_symmetry T. W. Shield and J. G. Harris. An acoustic lens design using the geometrical theory of diffraction. J. Acoust. Soc. Am. 75, 1634 (1984) Background reading D. C. Calvo, A. L. Thangawng, M. Nicholas, and C. N. Layman. Thin Fresnel zone plate lenses for focusing underwater sound. Appl. Phys. Lett. 107, 014103 (2015) W. E. Katzenmeyer. Experimental Tests of an Underwater Solid Acoustic Lens. J. Acoust. Soc. Am. 48, 101 (1970) K. C. Parker and C. E. Dean. The energy flow for a spherical acoustic lens: Experimental results avoiding interference effects. J. Acoust. Soc. Am. 127, 1913 (2010) L. Schlussler. The design and test results for an acoustic lens with elliptic surfaces. J. Acoust. Soc. Am. 67, 699 (1980) S. C. Chan, M. Mina, S. S. Udpa, W. Lord, L. Udpa, and T. Xue. Finite Element Modeling of Binary Acoustic Fresnel Lenses. In: Review of Progress in Quantitative Nondestructive Evaluation, Vol. (Springer, 1995), 923-930, http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2138&context=qnde B. E. A. Saleh and M. C. Teich. Fundamentals of photonics (Wiley-Interscience, 2007) H. D. Hristov. Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas (Artech House, 2000) Y. Li, G. Yu, B. Liang, X. Zou, G. Li, S. Cheng, and J. Cheng. Three-dimensional Ultrathin Planar Lenses by Acoustic Metamaterials. Scientific Reports 4, 6830 (2014), http://www.nature.com/articles/srep06830 W. E. Kock. Sound waves and light waves (Doubleday, 1965) Б. Ш. Перкальскис, В. Л. Ларин, М. Ф. Коношейдов. Линза для звуковых волн в воздухе. УФН 107, 709–711 (1972) [Robidoux 2006] Problem No. 4 “Super Ball” Throw a highly elastic ball into the space between two plates. The ball starts bouncing and under some circumstances can even be projected back to you. Investigate the motion of the ball and parameters influencing the motion, including the orientation of the plates. Background reading B. T. Hefner. The kinematics of a superball bouncing between two vertical surfaces. Am. J. Phys. 72, 7, 875-883 (2004), http://didel.script.univ-paris-diderot.fr/claroline/backends/download.php? url=L1N1amV0c19TZW1lc3RyZTFfMjAxM18yMDE0L1N1cGVyQmFsbC9zdXBlcmJhbGxfd2FsbHMucGRm &cidReset=true&cidReq=36UPPE36 P. J. Aston, P. M. Milliken, and R. Shail. The bouncing motion of a superball between a horizontal floor and a vertical wall. Int. J. Non-Lin. Mech. 46, 204-221 (2011), http://www.tpbin.com/Uploads/Subjects/f6cb1bfa-e653-4684-9c7b-36f1425d1096.pdf R. I. Garwin. Kinematics of an Ultraelastic Rough Ball. Am. J. Phys. 37, 1, 88-92 (1969), http://www.rpi.edu/dept/phys/Courses/PHYS1150/GarwinSuperBall.pdf R. Cross. Measurements of the horizontal coefficient of restitution for a superball and a tennis ball. Am. J. Phys. 70, 5, 482-489 (2002), http://www2.physics.umd.edu/~mfuhrer/course/spr02/AJP/AJP00482.pdf N. Maw, J. R. Barber, and J. N. Fawcett. The oblique impact of elastic spheres. Wear 38, 1, 101-114, http://www-personal.umich.edu/~jbarber/Wear1976.pdf N. Maw, J. R. Barber, and J. N. Fawcett. The rebound of elastic bodies in oblique impact. Mech. Res. Comm. 4, 1, 17-22 (1977), http://www-personal.umich.edu/~jbarber/MRC1977.pdf N. Maw, J. R. Barber, and J. N. Fawcett. The Role of Elastic Tangential Compliance in Oblique Impact. J. Lubric. Tech. 103, 1, 74-80 (1981), http://www-personal.umich.edu/~jbarber/Maw.pdf R. Cross. Grip-slip behavior of a bouncing ball. Am. J. Phys. 70, 11, 1093-1102 (2002), http://www.physics.usyd.edu.au/~cross/Gripslip.pdf R. Cross. The bounce of a ball. Am. J. Phys. 67, 222–227 (1999) Background reading K. L. Johnson. The bounce of 'superball'. Int. J. Mech. Eng. Educ. 11, 1, 57-63 (1982), http://didel.script.univ-paris-diderot.fr/claroline/backends/download.php? url=L1N1amV0c19TZW1lc3RyZTFfMjAxM18yMDE0L1N1cGVyQmFsbC9TdXBlcl9Kb2huc29uLnBkZg%3D %3D&cidReset=true&cidReq=36UPPE36 P. J. Aston and R. Shail. The Dynamics of a Bouncing Superball With Spin. Dynamical Systems 22, 3, 291-322 (2007), http://epubs.surrey.ac.uk/1537/1/fulltext.pdf, http://epubs.surrey.ac.uk/39609/2/reversals_submitted.pdf L. Labous, A. D. Rosato, and R. N. Dave. Measurements of collisional properties of spheres using highspeed video analysis. Phys. Rev. E 56, 5717 (1997) R. Sondergraard, K. Chaney, and C. E. Brennen. Measurements of Solid Spheres Bouncing Off Flat Plates. J. App. Mech. 112, 57, 694-699 (1990), http://authors.library.caltech.edu/152/1/SON100.pdf W. J. Stronge, R. James, and B. Ravani. Oblique impact with friction and tangential compliance. Phil. Trans. A 359, 1789, 2447-2465 (2001) A. Doménech. A classical experiment revisited: The bounce of balls and superballs in three dimensions. Am. J. Phys. 73, 28–36 (2005) ball bouncing under a table - high-speed video (youtube.com, from Hugh Hunt, Mar 30, 2008), https://youtu.be/e-Skl2Z1wkg Hugh Hunt. Bouncing Balls (2011), http://www2.eng.cam.ac.uk/~hemh/movies.htm#superballs ball bouncing under a table - simulation (youtube.com, from Hugh Hunt, Mar 30, 2008), https://youtu.be/MYX5V_Gj-aw Ball bouncing under a table (youtube.com, from Hugh Hunt, Oct 9, 2012), https://youtu.be/uC7YD5D0esY [dotwave.org 2013] Problem No. 5 “Ultrahydrophobic water” Set a dish filled with soapy water onto a loudspeaker or other vibrator. When it oscillates, it is possible to hold small droplets on its surface for a long time. Explain and investigate the phenomenon. Background reading Water + Soap + Sound (youtube.com, from NightHawkInLight, Sep 23, 2014), https://youtu.be/OU3953k7tIQ Drops on Drops on Drops (youtube.com, from Physics Central, Oct 15, 2012), https://youtu.be/KZ5ZLPWasrM J. Moláček and J. W. M. Bush. Drops bouncing on a vibrating bath. J. Fluid. Mech. 727, 582-611 (2013), http://math.mit.edu/~bush/wordpress/wp-content/uploads/2013/07/MB1-2013.pdf Yves Couder . Explains Wave/Particle Duality via Silicon Droplets [Through the Wormhole] (youtube.com, from draconisthe0ry, Aug 2, 2011), https://youtu.be/W9yWv5dqSKk How To Make Droplets Levitate on Water (technologyreview.com, 2012), http://www.technologyreview.com/view/429634/how-to-make-droplets-levitate-on-water/ D. Terwagne and J. W. M. Bush. Tibetan singing bowls. Nonlinearity 24, R51-R56 (2011), http://math.mit.edu/~bush/wordpress/wp-content/uploads/2012/08/TibetanBowls.pdf D. Terwagne. Bouncing Droplets, the Role of Deformations. (Thesis, Université de Liège, 2011), http://home.agh.edu.pl/~kozlow/fizyka/w%EAdruj%B9ce%20krople/2011_Terwagne_these.pdf Y. Couder, E. Fort, C.-H. Gautier, and A. Boudaoud. From Bouncing to Floating: Noncoalescence of Drops on a Fluid Bath. Phys. Rev. Lett. 94, 177801 (2005), http://www.researchgate.net/profile/Emmanuel_Fort/publication/7837945_From_bouncing_to_floating_ Noncoalescence_of_drops_on_a_fluid_bath/links/0046351e54fd772dcf000000.pdf J. Walker. Drops of liquid can be made to float on the liquid. What enables them to do so? Sci. Am. 238, 6, 123–129 (1978) Y. Amarouchene, G. Cristobal, and H. Kellay. Noncoalescing Drops. Phys. Rev. Lett. 87, 206104 (2011), http://www.researchgate.net/profile/Yacine_Amarouchene/publication/11662668_Noncoalescing_drops/ links/0fcfd50bf1ddf52395000000.pdf Background reading D. Terwagne, F. Ludewig, N. Vandewalle, and S. Dorbolo. The role of the droplet deformations in the bouncing droplet dynamics. Phys. Fluids 25, 122101 (2013), http://www.researchgate.net/profile/Denis_Terwagne/publication/235357505_The_role_of_deformation s_in_the_bouncing_droplet_dynamics/links/02bfe511d0c6a0b6a6000000.pdf L. Chen, J. Wu, Z. Li, and S. Yao. Evolution of entrapped air under bouncing droplets on viscoelastic surfaces. Colloids and Surfaces A: Physicochem. Eng. Aspects 384, 1–3, 726–732 (2011) T. Gilet, J. W. M. Bush. The fluid trampoline: droplets bouncing on a soap film. J. Fluid Mech. 625, 167203 (2009), http://www-math.mit.edu/~bush/Trampoline_JFM.pdf Wikipedia: Farady wave, https://en.wikipedia.org/wiki/Faraday_wave A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, and Y. Couder. Information stored in Faraday waves: the origin of a path memory. J. Fluid Mech. 674, 433-463 (2011), https://blog.espci.fr/aeddi/files/2014/06/Walker_JFM.pdf G. P. Neitzel and P.D. Aversana. Noncoalescence and Nonwetting Behaviour of Liquids. Ann. Rev. Fluid Mech. 34, 267-289 (2002), http://m.njit.edu/~kondic/pasi/files/Neitzel/suppl/nonwetting/NeitzelDellAversana-ARFM_34.pdf Y. Couder, S. Protiere, E. Fort, and A. Boudaoud. Dynamical phenomena: Walking and orbiting droplets. Nature 437, 208 (2005) J. Moláček and J. W. M. Bush. Drops walking on a vibrating bath: towards a hydronamic pilot-wave theory. J. Fluid Mech. 727, 612-647 (2013), http://math.mit.edu/~bush/wordpress/wpcontent/uploads/2013/07/MB2-2013.pdf D. M. Harris and J. W. M. Bush. The pilot-wave dynamics of walking droplets. Phys. Fluids 25, 091112 (2013) Background reading J. Qian and C. K. Law. Regimes of coalescence and separation in droplet collision. J. Fluid. Mech. 331, 59-80 (1997) D. Terwagne, T. Gilet, N. Vandewalle, and S. Dorbolo. From a Bouncing Compound Drop to a Double Emulsion. Langmuir 26, 14, 11680-11685 (2010), http://orbi.ulg.ac.be//bitstream/2268/105074/2/2010Langmuir-Terwagne.pdf N. Wadhwa, P. Vlachos, and S.Jung. Noncoalescence in the Oblique Collision of Fluid Jets. Phys. Rev. Lett. 110, 124502 (2013), https://vtechworks.lib.vt.edu/bitstream/handle/10919/24515/PhysRevLett.110.124502.pdf? sequence=1 Ø. Wind-Willassen, J. Moláček, D. M. Harris, and J. W. M. Bush. Exotic states of bouncing and walking droplets. Phys. Fluids 25, 082002 (2013), http://orbit.dtu.dk/fedora/objects/orbit:124040/datastreams/file_93e0e335-76ef-432c-a43b821ec14c4e9d/content F. Blanchette and T. P. Bigioni. Partial coalescence of drops at liquid interfaces. Nature Physics 2, 254257 (2006) J. W. M. Bush. Pilot-Wave Hydrodynamics. Ann. Rev. Fluid Mech 47, 269–292 (2015), http://math.mit.edu/~bush/wordpress/wp-content/uploads/2015/01/Bush-AnnRev2015.pdf H. Chu and H. Fei. Vortex-mediated bouncing drops on an oscillating liquid. Phys. Rev. E 89, 063011 (2014) R. Ramachandran and M. Nosonovsky. Vibro-levitation and inverted pendulum: parametric resonance in vibrating droplets and soft materials. Soft Matter 10, 4633 (2014), http://pubs.rsc.org/en/content/articlepdf/2014/SM/C4SM00265B Dotwave.org, http://dotwave.org/category/bibliography/core-bibliography/ Background reading Y. Couder and E. Fort. Single-Particle Diffraction and Interference at a Macroscopic Scale. Phys. Rev. Lett. 97, 154101 (2006), https://hekla.ipgp.fr/IMG/pdf/Couder-Fort_PRL_2006.pdf R. Brady and R. Anderson. Why bouncing droplets are a pretty good model of quantum mechanics (2014), arXiv:1401.4356 [quant-ph] S. Perrard. Une mémoire Ondulatoire: états propres, chaos et probabilités (Dissertation, Univ. Paris 7, 2014), https://tel.archives-ouvertes.fr/tel-01158368/document J. W. M. Bush, A. U. Oza, and J. Moláček. The wave-induced added mass of walking droplets. J. Fluid Mech. 755, R7 (2014), http://math.mit.edu/~bush/wordpress/wp-content/uploads/2014/08/BoostJFM.pdf D. M. Harris, T. Liu, and J. W. M. Bush. A low-cost, precise piezoelectric droplet-on-demand generator. Exp. in Fluids, 56, 4, 1-7 (2015), http://math.mit.edu/~bush/wordpress/wpcontent/uploads/2015/04/Harris-DropGenerator.pdf S. Perrard, M. Labousse, E. Fort, Y. Couder. Chaos driven by interfering memory. Phys. Rev. Lett. 113, 10, 104101 (2014), https://hal.archives-ouvertes.fr/hal-01061415/document M. Labousse. Étude d’une dynamique à mémoire de chemin: une expérimentation théorique (Dissertation, Univ. Pierre et Marie Curie UPMC, Paris VI, 2014), https://pastel.archives-ouvertes.fr/tel01114815/document R. Carmigniani, S. Lapointe, S. Symon, B. J. McKeon. Influence of a local change of depth on the behavior of walking oil drops. Exp. Thermal and Fluid Sci. 54, 237-246 (2014), arXiv:1310.2662v1 [physics.flu-dyn] A. Andersen, J. Madsen, C. Reichelt, S. Rosenlund Ahl, B. Lautrup, C. Ellegaard, M. T. Levinsen, and T. Bohr. Comment on Y. Couder and E. Fort: Single-Particle Diffraction and Interference at a Macroscopic Scale [Phys. Rev. Lett. 97, 154101 (2006)] (2014), arXiv:1405.0466v1 [physics.flu-dyn] [Mayer 2014] Problem No. 6 “Electric honeycomb” Set a vertically oriented steel needle over a horizontal metallic plate. Place some oil onto the plate. If you apply constant high voltage between the needle and the plate, a cell structure appears on the surface of the liquid. Explain and investigate this phenomenon. Background reading V. V. Mayer, E. I. Varaksina, and V. A. Saranin. Simple lecture demonstrations of instability and self-organization. Phys. Usp. 57, 1130–1135 (2014) В. В. Майер, Е. И. Вараксина, В. А. Саранин. Простые лекционные демонстрации неустойчивости и самоорганизации. УФН 184, 1249–1254 (2014), http://ufn.ru/ru/articles/2014/11/g/ Simple lecture demonstrations of instability and self-organization (youtube.com, from Ivan Sadovsky, Nov 28, 2014), https://youtu.be/KNnnqM0H5bs B. Malraison, P. Atten. Instabilité électrohydrodynamique due à l'injection d'ions à la surface libre d'un liquide isolant. J. Physique III 1, 1243–1249 (1991) C. S. Herrick. Electroconvection cells in dielectric liquids interfaced with conducting fluids. Proc. Royal Soc. A 336, 487–494 (1974) Wikipedia: Corona discharge, https://en.wikipedia.org/wiki/Corona_discharge Wikipedia: Dielectrophoresis, https://en.wikipedia.org/wiki/Dielectrophoresis H. A. Pohl. Some Effects of Nonuniform Fields on Dielectrics. J. Appl. Phys. 29, 1182 (1958) A. T. Pérez. Electrohydrodynamic instabilities in dielectric liquids induced by corona discharge. In: Conduction and Breakdown in Dielectric Liquids, 12th Int. Conf., 126–129 (1996) F. Vega and A. T. Pérez. Corona-induced electrohydrodynamic instabilities in low conducting liquids. Exp. in Fluids 34, 726–735 (2003) R. Chicón and A. T. Pérez. The stability of a horizontal interface between air and an insulating liquid subjected to charge injection. Phys. Fluids 26, 034103 (2014) [Ivanov 2015] Problem No. 7 “Hot water fountain” Partially fill a Mohr pipette with hot water. Cover the top of the pipette with your thumb. Turn the tip upwards and observe the fountain exiting the tip. Investigate the parameters describing the height of the fountain, and optimize them to get the maximum height. Background reading В. Майер, Е. Мамаева. Два физических фокуса // Квант, №1, стр. 23 (1978), http://kvant.mccme.ru/1978/01/dva_fizicheskih_fokusa.htm В. Майер, Е. Мамаева. Два физических фокуса // Опыты в домашней лаборатории: «Библиотечка «Квант», вып. 4. ― М.: Наука, 1981, стр. 42―43, http://publ.lib.ru/ARCHIVES/B/''Bibliotechka_''Kvant''/''Bibliotechka_''Kvant'',v.004.(1981). %5Bdjv-fax%5D.zip :-) [AmazingScience 君 2015] Problem No. 8 “Magnetic train” Button magnets are attached to both ends of a small cylindrical battery. When placed in a copper coil such that the magnets contact the coil, this "train“ starts to move. Explain the phenomenon and investigate how relevant parameters affect the train's speed and power. Background reading World's Simplest Electric Train 【世界一簡単な構造の電車】 (youtube.com, from AmazingScience 君 , Aug 26, 2014), https://youtu.be/J9b0J29OzAU World's Simplest Electric Train 2 【世界一簡単な構造の電車】 (youtube.com, from AmazingScience 君 , Mar 1, 2015), https://youtu.be/Y1MDOerruDU How does this “simple” electric train work? (physics.stackexchange.com, 2014), http://physics.stackexchange.com/questions/150033/how-does-this-simple-electric-train-work The mystery of the magnetic train (skullsinthestars.com, 2014), http://skullsinthestars.com/2014/12/12/themystery-of-the-magnetic-train/ Wikipedia: Magnetic moment, https://en.wikipedia.org/wiki/Magnetic_moment N. Derby and S. Olbert. Cylindrical magnets and ideal solenoids. Am. J. Phys. 78, 3, 229-235 (2010) J. T. Conway and C. Agder. Exact solutions for the magnetic fields of axisymmetric solenoids and current distributions. IEEE Trans. on Magnetics, 37, 4, 2977-2988 (2002) S. R. Muniz, M. Bhattacharya, and V. S. Bagnato. Simple analysis of off-axis solenoid fields using the scalar magnetostatic potential: application to a Zeeman-slower for cold atoms. Am. J. Phys. 83, 513-517 (2015), http://people.rit.edu/mxbsps/PublicationPDFs/SergioAJP.pdf, arXiv:1003.3720v2 [physics.atom-ph] R. H. Jackson. Off-Axis Expansion Solution of Laplace’s Equation: Application to Accurate and Rapid Calculation of Coil Magnetic Fields. IEEE Trans. on Electron Devices 46, 5, 1050-1062 (1999) E. M. Purcell and D. J. Morin. Electricity & Magnetism (Cambridge Univ. Press, 2013) D. J. Griffiths. Introduction to Electromagnetism (Prentice Hall, 1999) A. Zangwill. Modern electromagnetism (Cambridge Univ. Press, 2012) J. D. Jackson. Classical electrodynamics (Wiley, 1998) World's Simplest Electric Train (Swordmaker, 2015), http://www.freerepublic.com/focus/chat/3254213/posts [Reichle 2015] Problem No. 9 “Water waves” Generate a water wave with a vertically oscillating horizontal cylinder. When varying the excitation frequency and/or amplitude, the water seems to drift away from or towards the cylinder. Investigate the phenomenon. Background reading H. Punzmann, N. Francois, H. Xia, G. Falkovich, and M. Shats. Generation and reversal of surface flows by propagating waves. Nature Physics 10, 658–663 (2014) H. Punzmann, N. Francois, H. Xia, G. Falkovich, and M. Shats. Tractor beam on water surface (2014), arXiv:1407.0745 [physics.flu-dyn] N. Francois, H. Xia, H. Punzmann, S. Ramsden, and M. Shats. Three-Dimensional Fluid Motion in Faraday Waves: Creation of Vorticity and Generation of Two-Dimensional Turbulence. Phys. Rev. X 4, 021021 (2014), arXiv:1403.7880 [physics.flu-dyn] S. Taneda. Visual observations of the flow around a half-submerged oscillating circular cylinder. Fluid Dyn. Research 13, 119–151 (1994) attracting water waves (youtube.com, from R. Reichle, Feb 16, 2015), https://youtu.be/dK5GsHS9vfI ANU Scientists create a Tractor Beam on water (youtube.com, from ANUchannel, Aug 10, 2014), https://youtu.be/ZUYCkHWgVss Physicists create water tractor beam (phys.org, August 10, 2014), http://phys.org/news/2014-08physicists-tractor.html N. Francois, H. Xia, H. Punzmann, M. Shats. Inverse Energy Cascade and Emergence of Large Coherent Vortices in Turbulence Driven by Faraday Waves. Phys. Rev. Lett. 110 (2013), arXiv:1302.2993 [physics.flu-dyn], http://people.physics.anu.edu.au/~hop112/fl/pof_pdfs/2013_PRL_Francois_Inverse_cascade_in_FWT.pdf A. Constantin. The flow beneath a periodic travelling surface water wave. J. Phys. A: Math. Theor. 48, 143001 (2015) [Liaśnieŭski 2015] Problem No. 10 “Light rings” Let a liquid jet fall onto a surface. If the contact point is illuminated by a laser beam, rings of light around the jet can be observed (see Figure). Investigate the light rings and determine how they depend on relevant parameters of the whole system. Background reading J. Eggers and E. Villermaux. Physics of liquid jets. Rep. Prog. Phys. 71, 036601 (2008) http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.368.1361&rep=rep1&type=pdf K. M. Awati and T. Howes. Stationary waves on cylindrical fluid jets. Am. J. Phys. 64, 808 (1996) T. Massalha and R. M. Digilov. The shape function of a free-falling laminar jet: Making use of Bernoulli's equation. Am. J. Phys. 81, 733 (2013), http://www.stat.physik.unipotsdam.de/~pikovsky/teaching/stud_seminar/ajp_free_falling_jet.pdf S. Senchenko and T. Bohr. Shape and stability of a viscous thread. Phys. Rev. E 71, 056301 (2005) S. L. Goren and S. Wronski. The shape of low-speed capillary jets of Newtonian liquids. J. Fluid Mech. 25, 01, 185-198 (1966) E. J. Watson. The radial spread of a liquid jet over a horizontal plane. J. Fluid Mech. 20, 03, 481-499 (1964) Problem No. 11 “Rolling on a disc” If you put a light rolling object (e.g. a ring, a disc, or a sphere) on a horizontal rotating disc, it may start moving without being expelled from the disc. Explain how different types of motion depend on the relevant parameters. Background reading Samuel Earnshaw. Dynamics, or a Treatise on Motion, to Which is Added a Short Treatise on Attractions (Deighton, Cambridge, 1844), pp. 280-283, https://archive.org/details/dynamicsoratrea01earngoog Ball on turntable (physics.harvard.edu, 2003), https://www.physics.harvard.edu/uploads/files/undergrad/probweek/prob21.pdf J07M.1 - Ball on a Turntable (princeton.edu, 2007), http://www.princeton.edu/physics/graduateprogram/prelims/PrelimJ07.pdf Ball bearing on rotating turntable (youtube.com, from FysikkForFakirer, Aug 8, 2013), https://youtu.be/Qv93Xvr2Cms Ball on rotating turntable (youtube.com, from Hugh Hunt, Mar 30, 2008), https://youtu.be/GhvXNhCI9g0 Table tennis ball on rotating turntable (youtube.com, from FysikkForFakirer, Aug 12, 2013), https://youtu.be/ONPHyc1ifGQ Rolling Objects On a Rotating Disc (youtube.com, from Richard Giblin, Oct 13, 2011), https://youtu.be/o5m7bNziVLg Ball on Turntable (Hugh Hunt, 2011), http://www2.eng.cam.ac.uk/~hemh/ball_on_turntable.htm, http://www2.eng.cam.ac.uk/~hemh/movies.htm#ballonturntable A. Agha, S. Gupta, and T. Joseph. Particle sliding on a turntable in the presence of friction. Am. J. Phys. 83, 2, 126-132 (2015), http://universe.bits-pilani.ac.in/uploads/GoaPhysics/_pdf_archive_AJPIAS_vol_83_iss_2_126_1.pdf Background reading R. Ehrlich and J. Tuszynski. Ball on a rotating turntable: Comparison of theory and experiment. Am. J. Phys. 63, 351-359 (1995) R. H. Romer. Motion of a sphere on a tilted turntable. Am. J. Phys. 49, 985-986 (1981), http://isites.harvard.edu/fs/docs/icb.topic1216311.files/Project%20resources/Rolling%20sphere %20on%20turntable/AJP000985.pdf H. Soodak and M. S. Tiersten. Perturbation analysis of rolling friction on a turntable. Am. J. Phys. 64, 1130 (1996) A. V. Sokirko, A. A. Belopolskii, A. V. Matytsyn, D. A. Kossakowski. Behavior of a ball on the surface of a rotating disk. Am. J. Phys. 62, 2, 151-156 (1994), http://www.tyoma.com/plain/science/papers/14/ball.pdf W. Weckesser. A ball rolling on a freely spinning turntable. Am. J. Phys. 65, 736-738 (1997) K. Voyenli and E. Eriksen. On the motion of an ice hockey puck. Am. J. Phys. 53, 1149 (1985) K. Voyenli and E. Eriksen. Response to ‘‘Comment on ‘On the motion of an ice hockey puck’?’’ Am. J. Phys. 54, 778 (1986) J. Gersten, H. Soodak, and M. S. Tiersten. Ball moving on stationary or rotating horizontal surface. Am. J. Phys. 60, 43 (1992) K. Weltner. Stable circular orbits of freely moving balls on rotating discs. Am. J. Phys. 47, 984 (1979) J. A. Burns. Ball rolling on a turntable: Analog for charged particle dynamics. Am. J. Phys. 49, 56 (1981) Background reading K. Weltner. Central drift of freely moving balls on rotating disks: A new method to measure coefficients of rolling friction. Am. J. Phys. 55, 937 (1987) T. Pöschel, T. Schwager, and N. V. Brilliantov. Rolling friction of a hard cylinder on a viscous plane. Eur. Phys. J. B 10, 1, 169-174 (1999), arXiv:cond-mat/9809053 [cond-mat.mtrl-sci] L. Rodriguez. Comment on “A ball rolling on a freely spinning turntable” by Warren Weckesser [Am. J. Phys. 65 (8), 736–738 (1997)] Am. J. Phys. 66, 927 (1998) H. A. Múnera. A ball rolling on a freely spinning turntable: Insights from a solution in polar coordinates. Lat. Am. J. Phys. Educ. 5, 1, 49-55 (2011), http://www.lajpe.org/march11/LAJPE_459_Hector_Munera_preprint_corr_f.pdf Шарик, катящийся по вращающейся платформе (youtube.com, from НИЯУ МИФИ, Dec 17, 2012), https://youtu.be/LkrmALM8TsA Visualization of the Coriolis and centrifugal forces (youtube.com, from udiprod, Dec 29, 2007), https://youtu.be/49JwbrXcPjc Ball bearing on rotating turntable (youtube.com, from FysikkForFakirer, Apr 2, 2013), https://youtu.be/4luexfFQ5JQ Physics Help: Centripetal Force Free Body Diagrams Part 7 (youtube.com, from PhysicsEH, Jan 27, 2012), https://youtu.be/GWn5LNMDb2k [brerra66it 2013] Problem No. 12 “Van der Pauw method” It is known that conductivity of a material can be measured independently of the sample shape, as long as the sample has one border (no holes). To what extent can such a method be applied? Investigate and explain such measurements if the sample has holes. Background reading K. Szymański, J. L. Cieśliński, and K. Łapiński. Van der Pauw method on a sample with an isolated hole. Physics Letters A 377, 651-654 (2013), arXiv:1301.1625 [cond-mat.mes-hall] Wikipedia: Van der Pauw method, https://en.wikipedia.org/wiki/Van_der_Pauw_method L. J. van der Pauw. A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Techn. Rev. 20, 220–224 (1958), http://electron.mit.edu/~gsteele/vanderpauw/vanderpauw.pdf L. J. van der Pauw. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Research Rep. 13, 1, 1-9 (1958), http://140.120.11.121/~chia/PDF/van %20der%20pauw.PDF, http://socrates.berkeley.edu/~phylabs/adv/ReprintsPDF/SHE %20Reprints/01-Measuring%20Discs.pdf K. Szymański, K. Łapiński, and J. L. Cieśliński. Determination of the Riemann modulus and sheet resistance of a sample with a hole by the van der Pauw method. Meas. Sci. Technol. 26, 5, 055003 (2015), arXiv:1412.0707 [physics.class-ph] J. J. Mareš, P. Hubík, and J. Krištofik. Application of the electrostatic Thompson–Lampard theorem to resistivity measurements. Meas. Sci. Technol. 23, 4, 045004 (2012) D. W. Koon and C. J. Knickerbocker. What do you measure when you measure resistivity? Rev. Sci. Instrum. 63, 1, 207-210 (1992) L. B. Lugansky and V. I. Tsebro. Four-probe methods for measuring the resistivity of samples in the form of rectangular parallelepipeds. Instr. and Exp. Techniques 58, 1, 118-129 (2015), arXiv:1502.02600 [cond-mat.mtrl-sci] Background reading S. Thorsteinsson, F. Wang, D. H. Petersen, T. M. Hansen, D. Kjar, R. Lin, J. Kim, P. F. Nielsen, and O. Hansen. Accurate microfour-point probe sheet resistance measurements on small samples. Rev. Sci. Instrum. 80, 5, 053902 (2009) D. C. Worledge. Reduction of positional errors in a four-point probe resistance measurement. Appl. Phys. Lett. 84, 1695 (2004) A. A. Ramadana, R. D. Gouldb, A. Ashoura. On the Van der Pauw method of resistivity measurements. Thin Solid Films 239, 2, 272-275 (1994) J. D. Weiss, R. J. Kaplar, K. E. Kambour. A derivation of the van der Pauw formula from electrostatics. Solid-State Electronics 52, 1, 91–98 (2008) [Mythbusters 2008] Problem No. 13 “Paper vice” Take two similar paperback books and interleave a few pages at a time. Push the books together. Hold the two books by their spines and try to pull them apart. Investigate the parameters that set the limits of being able to separate the books. Background reading H. Alarcon, T. Salez, C. Poulard, J.-F. Bloch, E. Raphael, K. Dalnoki-Veress, F. Restagno. The enigma of the two interleaved phonebooks (2015), arXiv:1508.03290 [physics.class-ph] MythBusters - Phone Book Friction (youtube.com, from Discovery, May 7, 2009), https://youtu.be/AX_lCOjLCTo Mythbusters - Phone Book Friction (youtube.com, from KIGENTS, Sep 18, 2008), https://youtu.be/hOt-D_ee-JE Can the Frictional Force Between Two Interleaved Phone Books Lift A Car? [W/Video] (arborsci.com, 2013), http://www.arborsci.com/cool/can-friction-between-two-interleavedphone-books-lift-a-car Pulling apart two interleaved phone books (physics.stackexchange.com, 2014), http://physics.stackexchange.com/questions/135716/pulling-apart-two-interleaved-phonebooks Interlacing pages of books - Need help with understanding (physicsforums.com, 2015), https://www.physicsforums.com/threads/interlacing-pages-of-books-need-help-withunderstanding.692173/ Discovery Mythbusters - The Phone Book Myth (youtube.com, Timacious, Nov 29, 2007), https://youtu.be/6sIB2kL-BWc D. Van Domelen. Showing Area Matters: A Work of Friction. Phys. Teach. 48, 1, 28-29 (2010) [Tyndall 1867] Problem No. 14 “Sensitive flame” A combustible gas (e.g. propane) streams vertically out of a fine nozzle and then through a fine metallic mesh at a distance of about 5 cm. The gas is lit and produces a flame above the mesh. Under some circumstances, this flame reacts very sensitively to sound. Investigate the phenomenon and the relevant parameters. Background reading J. Tyndall. On Sounding and Sensitive Flames. Phil. Mag. 33-34, 92-99 (1867), http://zs.thulb.unijena.de/servlets/MCRFileNodeServlet/jportal_derivate_00119247/PMS_1867_Bd33.pdf F. W. Barrett. Note on “Sensitive Flames”. Phil. Mag. 33-34, 216-222 (1867), http://zs.thulb.unijena.de/servlets/MCRFileNodeServlet/jportal_derivate_00119247/PMS_1867_Bd33.pdf Wikipedia, Sensitive Flame, https://en.wikipedia.org/wiki/Sensitive_flame W. Bragg. The world of sound (Bell, London, 1920) Phonetics laboratory 1920s (youtube.com, from Michael Ashby, Apr 26, 2010), https://youtu.be/cXp7jfgRNVA W. F. Barrett. The Effect of Inaudible Vibrations upon Sensitive Flames. Nature 16, 12-12 (1877), http://www.nature.com/nature/journal/v16/n392/abs/016012a0.html W. W. Haldare Gee. The Bunsen Flame a Sensitive Flame. Nature 19, 122-122 (1878), http://www.nature.com/nature/journal/v19/n476/abs/019122e0.html Sensitive Flames, 1874 (JF Ptak Science Books, 2008), http://longstreet.typepad.com/thesciencebookstore/2008/05/jf-ptak-science.html E. N. da C Andrade. The sensitive flame. Proc. Phys. Soc. 53, 4, 329 (1941) X. Wu, M. Wang, and P. Moin. Combustion instability due to the nonlinear interaction between sound and flame. J. Fluid Mech. 497, 23-53 (2003), https://web.stanford.edu/group/ctr/ResBriefs01/wu3.pdf F. Duchaine and T. Poinsot. Sensitivity of flame transfer functions of laminar flames (Center for Turbulence Research, Proc. Summer Program, 2010), https://web.stanford.edu/group/ctr/Summer/SP10/5_02_duchaine.pdf W. N. Zartman and S. W. Churchill. Heat transfer from acoustically resonating gas flames in a cylindrical burner. AIChE J. 7, 4, 588–592 (1961) Wikipedia: Rubens' tube, https://en.wikipedia.org/wiki/Rubens'_tube Problem No. 15 “Contactless calliper” Invent and construct an optical device that uses a laser pointer and allows contactless determination of thickness, refractive index, and other properties of a glass sheet. Background reading W. R. Tole. Apparatus for determining the thickness of material. US Patent 4902902 A (Feb 20, 1990), https://www.google.com/patents/US4902902 T. Wilke, A. Witzmann, R. Fehr, J. Faderl, O. Schmittel, E.-W. Schaefer, C. Fritsch. Method and apparatus for contactless optical measurement of the thickness of a hot glass body by optical dispersion. US Patent 7414740 B2 (Aug 19, 2008), http://www.google.com/patents/US7414740 T. V. Larina, E. Y. Kutenkova, N. Rakhimov, and O. K. Ushakov. Contactless glass sheet thickness meter. Russian Patent 2429447, http://russianpatents.com/patent/242/2429447.html Contactless online thickness measurement - alpha.ti (nokra.de), http://www.nokra.de/en/produkte/thickness-measurement/ S. Spengler, D. Munkes, and G. Sparschuh. Apparatus for making contactless measurements of the thickness of an object made of transparent material. US Patent 5636027 A (Jun. 3, 1997), https://www.google.com/patents/US5636027 Michelson's Interferometer- Refractive index of glass plate (vlab.amrita.edu, 2013), http://vlab.amrita.edu/?sub=1&brch=189&sim=1519&cnt=1 Determination of the index of refraction using a laser pointer (euhou.net), http://www.euhou.net/index.php/exercises-mainmenu-13/classroom-experiments-and-activitiesmainmenu-186/203-determination-of-the-index-of-refraction-using-a-laser-pointer P. Castellini, L. Stroppa, and N. Paone. Laser sheet scattered light method for industrial measurement of thickness residual stress distribution in flat tempered glass. Optics and Lasers in Engineering 50, 5, 787-795 (2012) [Physics Girl 2014] Problem No. 16 “Frisbee vortices” When a vertical plate is partially submerged in water and pulled in a direction normal to the plate, a pair of vortices is created in the surface of the water. Under certain conditions, these vortices travel along the surface for a long distance. Investigate the parameters influencing the motion and stability of these vortices. Background reading R. M. Kiehn. Falaco Solitons, Cosmic Strings in a Swimming Pool (2001), arXiv:gr-qc/0101098, http://coll.pair.com/csdc/pdf/fal10305.pdf R.M. Kiehn. Experimental Evidence for Maximal Surfaces in a 3 Dimensional Minkowski Space (math.mit.edu, 2005), http://math.mit.edu/~dunkel/Teach/18.354_2014S/2005Kiehn_Falaco.pdf R. M. Kiehn. Falaco Solitons - Black holes in a Swimming Pool (citeseerx.ist.psu.edu, 2007), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.444.6318&rep=rep1&type=pdf Crazy pool vortex (youtube.com, from Physics Girl, Nov 22, 2014), https://youtu.be/pnbJEg9r1o8 Fun with Vortex Rings in the Pool (youtube.com, from Physics Girl, Dec 17, 2014), https://youtu.be/72LWr7BU8Ao Falaco Solitons: Particles at the Pool (physicsbuzz.physicscentral.com, 2014), http://physicsbuzz.physicscentral.com/2014/09/while-season-for-swimming-has-already.html Wikipedia:Rankine vortex, https://en.wikipedia.org/wiki/Rankine_vortex Cartan's Corner - Falaco Solitons (pair.com), http://www22.pair.com/csdc/car/carhomep.htm R. M. Kiehn. Falaco Solitons, Cosmology, and the Arrow of Time. Non-Equilibrium Systems and Irreversible Processes Adventures in Applied Topology Vol. 2 (CSDC, 2004), http://www22.pair.com/csdc/gdocs/cosmos69g.pdf Quark pool (soliton "pairs") (youtube.com, from jeffreyscomputer, Aug 2, 2013), https://youtu.be/909o_kbCdFg Mini Pool Vortex Rings (youtube.com, from Cool Science, Jan 20, 2015), https://youtu.be/WFTvPByynv4 [Penn State 2009] Problem No. 17 “Crazy suitcase” When one pulls along a two wheeled suitcase, it can under certain circumstances wobble so strongly from side to side that it can turn over. Investigate this phenomenon. Can one suppress or intensify the effect by varied packing of the luggage? Background reading R. H. Plaut. Rocking instability of a pulled suitcase with two wheels. Acta Mechanica 117, 1-4, 165-179 (1996), http://www.msc.univ-paris-diderot.fr/~phyexp/uploads/Valise/article2.pdf S. Suherman, R. H. Plaut, L. T. Watson, and S. Thompson. Effect of Human Response Time on Rocking Instability of a Two-wheeled suitcase. J. Sound and Vibration 207, 5, 617-625 (1997), http://www.radford.edu/~thompson/RP/suitcase.pdf D. Takács, G. Stépán, and S. J. Hogan. Isolated large amplitude periodic motions of towed rigid wheels. Nonlinear Dyna. 52, 1-2, 27-34 (2008), arXiv:0711.2228 [nlin.CD], http://www.mm.bme.hu/~takacs/publications/nody2008.pdf O. M. O’Reilly and P. C. Varadi. A Traveler’s Woes: Some Perspectives from Dynamical Systems. In: New Applications of Nonlinear and Chaotic Dynamics in Mechanics Solid Mechanics and its Applications, Vol. 63 (Springer, 1999), pp. 397-406 G. Stépán. Delay, Nonlinear Oscillations and Shimmying Wheels. In: New Applications of Nonlinear and Chaotic Dynamics in Mechanics Solid Mechanics and its Applications, Vol. 63 (Springer, 1999), pp. 373-386, http://www.mm.bme.hu/~stepan/mm/book/stepan_shimmy.pdf R. H. Plaut, W. T. Fielder, and L. N. Virgin. Fractal behavior of an asymmetric rigid block overturning due to harmonic motion of a tilted foundation. Chaos, Solitons & Fractals 7, 2, 177–196 (1996) D. Takács and G. Stépán. Nonlinear Oscillations at Critical Shimmy Parameters: Experiments and Numerics. ASME 2010 Int. Mech. Eng. Congress and Exposition, Vol. 11 (2010) C. S. Hsu and S. J. Bhatt. Stability Charts for Second-Order Dynamical Systems With Time Lag. J. Appl. Mech. 33, 1, 119-124 (1966) A. Ageno and A. Sinopoli. Lyapunov's exponents for nonsmooth dynamics with impacts: Stability analysis of the rocking block. Int. J. Bifurcation and Chaos (2011), http://www.researchgate.net/profile/Anna_Sinopoli/publication/263985456_Lyapunov's_exponents_for_nonsmoo th_dynamics_with_impacts_Stability_analysis_of_the_rocking_block/links/54f47b9c0cf2eed5d734a690.pdf Important information The basic goal of this Kit is not in providing students with a start-to-finish manual or in limiting their creativity, but in encouraging them to regard their work critically, look deeper, have a better background knowledge, be skeptical in embedding their projects into the standards of professional research, and, as of a first priority, be attentive in not “re-inventing the wheel” An early exposure to the culture of scientific citations, and developing a responsible attitude toward making own work truly novel and original, is assumed to be a helpful learning experience in developing necessary standards and attitudes Good examples are known when the Kit has been used as a concise supporting material for jurors and the external community; the benefits were in having the common knowledge structured and better visible Even if linked from iypt.org, this file is not an official, binding release of the IYPT, and should under no circumstances be considered as a collection of authoritative “musts” or “instructions” for whatever competition Serious conclusions will be drawn, up to discontinuing the project in its current form, if systematic misuse of the Kit is detected, such as explicit failure of citing properly, replacing own research with a compilation, or interpreting the Kit itself as a binding “user guide” All suggestions, feedback, and criticism about the Kit are warmly appreciated :-) Habits and customs Originality and independence of your work is always considered as of a first priority There is no “correct answer” to any of the IYPT problems Having a deep background knowledge about earlier work is a must Taking ideas without citing is a serious misconduct Critically distinguishing between personal contribution and common knowledge is likely to be appreciated Reading more in a non-native language may be very helpful Local libraries and institutions can always help in getting access to paid articles in journals, books and databases The IYPT is not about reinventing the wheel, or innovating, creating, discovering, and being able to contrast own work with earlier knowledge and the achievements of others? Is IYPT all about competing, or about developing professional personal standards? Requirements for a successful IYPT report Novel research, not a survey or a compilation of known facts Balance between experimental investigation and theoretical analysis Comprehensible, logical and interesting presentation, not a detailed description of everything-you-have-performed-and-thought-about Clear understanding of the validity of your experiments, and how exactly you analyzed the obtained data Clear understanding of what physical model is used, and why it is considered appropriate Clear understanding of what your theory relies upon, and in what limits it may be applied Comparison of your theory with your experiments Clear conclusions and clear answers to the raised questions, especially those in the task Clear understanding of what is your novel contribution, in comparison to previous studies Solid knowledge of relevant physics Proofread nice-looking slides An unexpected trick, such as a demonstration in situ, will always be a plus How to give a science talk Take care of your listeners if they all don’t get what you say, it’s your problem it’s your job to do science work and make conclusions. It’s their job to listen Put yourself in context of existing results your novelty is only visible in contrast with existing knowledge making profound conclusions is harder than measuring and writing formulas and reading papers be proud of your higher-level achievements (if you have such) Present a compelling argument you want to say that you solved the required problem saying how much you’ve struggled on it doesn’t help the case Cut the non-essential information if your math is thick, show only core assumptions and derived results, we trust algebra and simulations if your data is big, show us trends / slopes / averaging / fits, not all of it very often, less is more Feynman: to be self-confident? “I’ve very often made mistakes in my physics by thinking the theory isn’t as good as it really is, thinking that there are lots of complications that are going to spoil it ― an attitude that anything can happen, in spite of what you’re pretty sure should happen.” R.P. Feynman. Surely You’re Joking, Mr. Feynman (Norton, New York, NY, 1985) Visit iynt.org! Check the breathtaking problems! Pre-register a team! First draft // August 30, 2015 Preparation to 29th IYPT’ 2016: references, questions and advices Grain-Triptych by Bastian Greshake (CC BY-SA 2.0) is used on the cover Ilya Martchenko, 1 * Matej Badin, 2 Reza Montazeri Namin, 3 and Andrei Schetnikov 4 University of Fribourg; 2 Comenius University in Bratislava; 3 Sharif University of Technology; 4 Pythagoras School, Novosibirsk 1 July 5, 2015…August 30, 2015 * to whom correspondence should be addressed: ilya.martchenko@iypt.org http://ilyam.org Follow @iypt and @iyptarchive on Twitter! iypt