PDF文库 - 千万精品文档,你想要的都能搜到,下载即用。

华罗庚与中国的数论.pdf

加油少年丨Tfboys8 页 1.622 MB下载文档
华罗庚与中国的数论.pdf华罗庚与中国的数论.pdf华罗庚与中国的数论.pdf华罗庚与中国的数论.pdf华罗庚与中国的数论.pdf华罗庚与中国的数论.pdf
当前文档共8页 2.88
下载后继续阅读

华罗庚与中国的数论.pdf

   , ,   ,     ,   (1982),  ,  –  !, !  ), , 1928   ( (L. E. Dickson)#  # , (x − 1)x(x + 1) 6 %  1929 ,  6, + + 21931     <(8     , + 1936 ,  , &/,8 , * (G. H. Hardy) * (L. J. Mordell) 1938 ,   .2   , 2 , @f 1935 #, , -, +,  2, ,,  .  , @f#,2 , , , *–  (J. E. Littlewood)–( (S. Ramanujan)  +@   ,     (I. M. Vinogradov) , !=3,,  +,  ,  ,   3,   ,&',  T, ,  O   ,  ,   268 |    q  f (x)  # f (x) = ak xk + · · · + a1 x,  (ak , · · · , a1 , q) = 1/  q S(q, f (x)) = e x=1 f (x) q  , e(x) = e2πix    S(q, x2 ) ) (C. F. Gauss) ,  S(q, x2 ) ≤ 3 f (x) = x2 , √ 2q, S(q, f (x2 )) @ :3,     # 1940 ,    : & % 1 |S(q, f (x))| = O q 1− k +ε , (1)  ε   O /(7 k  ε @ (1) N, + q = pk ,  p , p = k,   S(q k , xk ) = 1 (pk )1− k ,  (1) 52 ; ,  1958  ,  (a, q) = 1  b = 0 ,  q (2) e x=1  ε >0  O  axk + b q  & % 1 = O q 2 +ε (q, b) , (7 ε  k,  (E. Waring)      (H. Weyl) @,  + %  *#  ,  % (A. Walfisz)$ (E. Ch. Titchmarsh) * (K. Prachar) ,   , 1    1770 , 7 ;  N = xk1 + · · · + xks ,  N > 0, x1i s ≥ 0 (D. Hilbert)  1900  s(k) 1920 , *   s % k ,  (3) 7 ,  k ≥ 2, /(7 k  s(k), ! ——  ,  (3) ,  G(k) ' ,    \N  g(k) '  s ! (3)   N  g(k)  s! G(k)  ,  G(k)  @   rs,k (N ) ' (3) # , * + 5 ,   1 s Γ 1+ s k % s & N k −1  rs,k (N ) ∼ σ(N ) Γ k   ,  s ≥ (k − 2)2  σ(N )  %*,  k−1 ! N   G(k) ≤ (k − 2)2k−1 + 5,  1938  *–  G(k) ≤ 2k + 1 (4) ,    s ≥ 2k + 1 , rs,k (N ) &#  % )-#, 2k  1  p  k   (5) e(αxk ) dα = O(P 2 −k+ε )   0  x=1 k ,   -   #  Vaughan)   : “ , &-#”    20 " 30 ,    ! * (H. Davenport)    xk & k #   @ (1)  ,    fi (x)(1 ≤ i ≤ s) s    k  *# 1940   (3)    N = f1 (x1 ) + · · · + fx (xs ) (6)  (3)  rs,k (N ) &  ' ,     (R. C. s ≥ 2k (k  3)  s ≥ 7 · 2k−3 + 1 (k  6),  B, (L. G. Shnirel’man) (Yu. V. Linnik) " –/" (D. R. Heath-Brown) ,  #%&  ,       ,    )–) (C. Goldbach)  ,  x ,+ *  ,  s≥ (7)  2k + 1, k ≤ 10, 2k (log k − log log k + 2.5), 2 k > 10 ,  N = P1k + · · · + Psk (8)   &#,  p + , @   , (7) #-#  ,  @ 10k 2 log k (8) %**,   s ≥   269 270 |   ≡ s (mod K)  ' s   k  ' &#,  s  (7),  K (7 k   ' &#, s  C s0  s0 ∼ 4k log k 8:  k=1 , K = 2; k = 2 , K = 24, : (9)    ( ); (10)  ≡ 5 (mod 24)  5     \N +@ (11) \N , "$# 1947 ,   " 1960—1970 , -2 ,     +@ / ,  , /,  ,  (C. L.  Siegel)    L-+@,   20 " 40 , \N ,  , ) * (H. Halberstam) b: “   1947 \N   ”      Gs ' s--  Gs = {x : x(x1 , · · · , xs ), 0 ≤ xi ≤ 1, 1 ≤ i ≤ s}   f (x) Gs ,    1,  f (x) ( 1 (J. Fourier) # C(m1 , · · · , ms )e2πi(m1 x1 +···+ms xs ) , f (x) = m ( 1 @ |C(m1 , · · · , ms )| ≤  C > 0  α > 1 C , (m1 · · · ms )α ,   m = max(1, |m|)  a = (a1 , · · · , as )  n > 0,   n f k=1 as k a1 k ,··· , n n  n = m = e(a1 m1 +···+as ms )k/n C(m) k=1 n C(m) m a1 m1 +···+as ms ≡O( mod n)    C(0, · · · , 0) =  1 ···  1 0   f (x1 , · · · , xs )dx1 · · · dxs = 0   1  f (x)dx −   Gs n  n f k=1 ≤ f (x)dx, Gs as k a1 k ,··· , n n C      m a1 m1 +···+as ms ≡O( mod n) 1 (m1 · · · ms )α = CΩ(a) ( ),  Σ 'O m = 0 *  Ω(a)   + a ! ! (N. M. Korobov, 1959)  (E. Hlawka, 1962) !  ,  n = p ,  a !  αsp  log |Ω(a)| = O  pα  9,  “”   p, ' O(p2 )  '  a, # “$”     s = 2  (Fn )(n = 0, 1, · · · ) !R (L. P. Fibonacci) ', [ # F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1 (n ≥ 1)   '  1960   Fn   log Fn |Ω(1, Fn−1 )| = O , Fnα (12)  #  1 1 (13) 0 1 f (x1 , x2 )dx1 dx2 − Fn 0  Fn f k=1 k Fn−1 k , Fn Fn   =O  log Fn  Fnα   (13)  : √   2π 2π 5−1 Fn−1 = 2 cos  ; 3,  Q 2 cos  1. Fn 2 5 p ,  p > 5 ,  !  $f % & () 1, h2 , · · · , h() , n  , s 1 < n1 < n2 < · · · , s= p−1 , 2  $ s- #    n () () % − α − α +ε & 1  k h2 k hs k (14)  f (x)dx − f , ,··· , = O n 2 2(s−1) n n n n     Gs k=1 271 272 |  2.  (s) !R', [ # (s) (s) (s) (s) = · · · = Fs−2 = 0, Fs−1 = 1, ( ' (s)   #  ' Fn , = F1 F0  Fn(s) s Fn+s = Fn+s−1 +· · ·+Fn(s)  (s) (s) Fn+1 k F f (x)dx − (s) f , , · · · , n+s−1 (s) (s) Fn(s) Gs Fn k=1 Fn Fn   α α − −α− (s) 2 2s+1 log 2 22s+3 = O Fn  (15) 1  k (n ≥ 0)     : (16)   (),  , 1981         1742  7 ,  (L. Euler) $, )   n−3 !  7  : (17) ! ≥6  ; (18)  ≥9   (18)  (17)   , 3 (17) ,  n  ≥9, ≥6 (17),   n − 3 = p1 + p2 ,  (18) )7   (17)  (17)   “L 5 ”L (Eratosthenes) L1919 , / (V. Brun)  )7 6 /"   (9, 9),  “   250 !&  !    9 ” : (7, 7) (H. Rademacher, 1924), (6, 6) (T. Estermann, 1932), (5, 7), (4, 9), (3, 15), (2, 366) (G. Ricci, 1937), (5, 5) (A. Buchstab, 1938), (4, 4)(A. Buchstab, 1940) 1953 . )7 , . (A. Selberg) L , : (19) (3, 4) (  L , 1956) ,.' (a, b)(a + b ≤ 6) ,  , !  1957   (P. Kuhn)  1954   (a, b)(a + b ≤ 5),   : (20) (2, 3) (   /L , 1957)  (Yu. V. Linnik) L .,  (A. Rényi) (1, c),  c      %3, Riemann) 7 ,    (1, 6),  !   , (T. Estemann)  *, (G. F. B. % , (1, 4)R , (1, 6)R ,   1957  (21) (1, 3)R    *,7 , * ,  *#      x lix  2  μ (D) max π(x, D, ) − , =O φ(D)  ( mod D) logA x 1 (22) D≤x 3 −ε (,D)=1  μ(D)  φ(D) &'G  x dt , π(x, D, ) = lix = 2 log t  (A. F. Möbius)  ε>0A>0 1,   p≤x p≡( mod D)  (22)  (23) (1, 5) (* ,, 1962) 1 3 &  η π(x, D, ) '& 1,  , 1 3 * ,) (M. B. Barban) ! (22) ,  & ,  3 8   ,  (1, c)    *#,  (22)  (24) (1, 4) (* ,, Barban, 1963) ,  1962  (22)   (1, 4), +3 (22)  1 1000 3  ,  ,  (1, 3)1965 , & (E. Bombieri)  3 2475 8 1 1  !& (22)   ,  3 2 *,7    (1, 3) 1966 , ' & *#,  /&   (25) (1, 2) ( /, 1966)   /  3   : (1, 3)  @! n    R(n) /    %3 ! 1 3  R(n) @ R(n) > r(n),   /@ r(n) , ' / )7 #,  &   !  (1, 2) “!&”   @  1.   , , /, # ?,   9    ,  (G. Tarry) ,  (E. C. Catalan) , *, ζ-, ',,   273 274 |   ,  ,  * @, #,  + 9 ,D /, , @, : ,  ,   ,  &  &5 ,  , ' 2.   ,  ;,  /*#,  F: “  (leading) ,   ,   ,  ,  ,      # ,      $ ,   —— 50 ,   ”1) 1) 4 H. Halberstam. Loo-keng Hua, Biographical Memoirs, Vol. 81, 2002, U. S. National Academy Press.

相关文章