09年第一学期期末试卷及答案.pdf
....................... .......................................... .......................................... ....................................... ) ( C ¾ S Ø K E ÆêÆÆÆ 2008*2009Æc1ÆÏÏ"ÁÁò Aò §¶¡µ pêI mXµ êÆÆÆ 6 ¶µ Æ Òµ K Ò 1 2 3 § S Òµ MATH120011 Á/ªµ 4ò ; µ 4 5 6 7 o 8 © © !À JK (z zK 2.5© ©§ 20© ©) 1. n (n > 1) ( D ¥zþ 1 ½ −1§KTÝ ) A. 1 a11 a12 a13 a21 a22 a23 = d§K a31 a32 a33 A. 3d ( A A. 1 −6a22 3a23 2a31 −4a32 2a33 −a11 2a12 −a13 § =( C ) C. 12d D. 18d −1 A−1 ! B −1 ! (A + B)−1 þ3"K (A−1 + B −1 ) ) A. A (A + B)−1 B 4. t = ( 3a21 B. 6d 3. A ! B Ó D. óê C. Ûê B. 0 2. e1ª 1ª C B. A (A + B)−1 C. (A + B)−1 B D. A + B ) §þ| (1, 1, 1)§(t, 1, 2)§(1, t2 , 1) 5Ã'º B. −1 1 1 ( 8 ) C. −2 D. 2 = 5. V ê K þ n (n > 1) 5m"e(Ø ( C ) é V þ¤ k5C ϕ Ѥá" A. V = Im ϕ ⊕ Ker ϕB. dim V = dim Im ϕ + dim Ker ϕC. V = Im ϕ + Ker ϕD. Im ϕ ∩ Ker ϕ = {0} 6. p (x) ´ê K þØõª§f (x) = pm (x) (m > 1)§g (x)§h (x) ∈ K [x]"Ke(Ø ( A ) (" A. f (x) | g (x) h (x) ⇒ f (x) | g (x) ½ f (x) | h (x) B. f (x) | g (x) h (x) ⇒ f (x) | g (x) ½3ê k§f (x) | hk (x) C. (f (x) , f 0 (x)) 6= 1 D. f (x) 3 C þk" 7. a, b ©O ( A. −1§2 D ) §(x − 1)2 Ø ax4 + bx2 + 1" B. −1§−2 C. 1§2 D. 1§−2 8. A§B Ñ´ê K þ n (n > 1) Ý "Ke(ؤᴠ( D ) A. e Ax = 0 )Ñ´ Bx = 0 )§K A þÑ´ B þ 5|ܶ B. e Ax = 0 )Ñ´ Bx = 0 )§K B þÑ´ A þ 5|ܶ C. e Ax = 0 )Ñ´ Bx = 0 )§K A 1þÑ´ B 1þ 5|ܶ D. e Ax = 0 )Ñ´ Bx = 0 )§K B 1þÑ´ A 1þ 5|ܶ !W K (z zK 2.5© ©§ 20© ©) 1. üõª f (x) = x4 − 2x3 − 3x2 + 9x − 6 Ú g(x) = x3 − 6x2 + 12x − 8 úϪ (f (x), g(x)) = x−2 . 1 2 ( 8 ) .................... .......................................... .......................................... .......................................... ) ( C ¾ S Ø K 2. ®Ý X ÷ve§µ 1 2 3 1 2 1 , X −1 4 3 = −1 3 1 2 0 1 K X = 5 − 3 3 − 2 4 2 3 3 1 2 . 3. ,5m V þ5C ϕ 3,|ÄeL«Ý K ϕ Ømê dim Ker(ϕ) = 1 1 3 A= 0 4 1 1 1 2 1 1 § 1 2 2 5 3 3 . 4. A n §A∗ L« A Ý §® |A∗ | = 2n−1 , K |A−(A∗ )∗ | = 2(ω − 2n−2 )n Ù¥ ω n−1 = 1 . 5. X J Km [x] L « ê K þ g ê Ø L m õ ª | ¤ 5 m § U = K3 [x], V = K4 [x]§ y k 5 N T : U 7→ V ÷ v Rx T (f ) = 1 f (t)dt, ∀f (x) ∈ U . © O ½ U , V Ä {1, x + 1, x2 , x3 } Ú {1, x, x2 , (x + 1)3 , x4 }§ KUþ½Âª§T 3ùü|Äe éAÝ A 3 2 1 −1 − − − 2 3 4 1 1 −1 0 1 0 −1 0 2 1 0 0 0 3 1 0 0 0 4 A= . 6. õª xp + px + 1 £p Ûê¤3knêþ£´/Ĥ 1 3 ( 8 ) Ä " 7. M = A B O C M −1 = A , Ù¥ A, C þ_ §K −1 −1 −A BC O C −1 −1 . 8. ® V ´ 3 E5m§e 1 , e2 , e3 ´|ħV þ5C ϕ 3ù 0 −a |ÄeÝ A = 1 2a 0 0 fm§ K a 0 V Tk 3 pØÓ 1- ϕ-ØC 0 1 a 6= 0Úa 6= 1 . n !( K 10© ©) V ´þm R3 , e1 , e2 , e3 ´ V Äþ|§ ϕ´ 2 −1 3 V þ5C ϕ 3Äþ|eÝ A = 1 2 0 . ykþ −2 2 1 t t t | α1 = (−1, −1, 2) §α2 = (3, 2, 0) , α3 = (−1, −1, 1) ∈ V . ¯ (1) α1 , α2 , α3 ´Ä V Ä? (2) XJ α1 , α2 , α3 ´ V ħ¦ ϕ 3ù|ÄeÝ " −1 3 −1 (α1 , α2 , α3 ) = (e1 , e2 , e3 ) −1 2 −1 2 0 1 −1 3 −1 1. Ï −1 2 −1 2 § 0 1 −1 3 −1 = −1 6= 0§ ¤ ± −1 2 −1 ´ _ Ý 2 0 1 α1 , α2 , α3 ´ V Ķ 1 4 ( 8 ) −1 3 −1 2. PP = −1 2 −1 §K(α1 , α2 , α3 ) = (e1 , e2 , e3 ) P §ϕ (α1 , α2 , α3 ) = 2 0 1 −1 ϕ (e1 , e2 , e3 ) P = (e1 , e2 , e3 ) AP = (α1 , α2 , α3 ) P AP §ϕ3ù |ÄeÝ −17 11 −12 −1 P AP = 8 −3 5 " 36 −24 25 o ! ( K ©) ® α1 = (2, 1, 4, −2)t §α2 = (5, −1, 3, 3)t Ú α3 = (1, 0, 1, 0)t 10© 2x1 − 9x2 − cx3 + bx4 = 1 x − 11x + ax + bx = 1 1 2 3 4 n)§ ´§| 5x − 29x − 2x − 15x = 3 1 2 3 4 4x − 31x − x − 15x = 3 1 2 3 4 (1) y²µ§|XêÝ 2; (2) ¦Ñëê a§b§c §¿¦)§|" 1. N ´ w Ñ § § | 13!4 § ê X ê Ø ¤ ' ~ § ¤±XêÝ A u ½ u2¶ Ó d uα3 − α1 = (−1, −1, −3, 2) t §α2 − α1 = (3, −2, −1, 5)t ´ A à g § | )§ ؤ'~§¤±àg§|Ä:)X¥kü 5Ã')§u´XêÝ u½u4 − 2 = 2§ U´2¶ 2. dXêÝ 2 −9 −c b 2 −9 −c 1 −11 a 1 −11 a b = 2§ 2§¤±r 5 −29 −2 −15 5 −29 −2 4 −31 −1 −15 4 −31 −1 1 5 ( 8 ) 1 −11 a b 1 −11 a b 0 13 0 13 −2a − c −2a − c −b −b ⇒ 0 26 −5a − 2 −5b − 15 0 0 2c − a − 2 −3b − 15 0 0 c − 2a − 1 −3b − 15 0 13 −4a − 1 −4b − 15 §¤± 2c − a − 2 = 0 , a = 0, c = 1§K −3b − 15 = 0b = ) c − 2a − 1 = 0 11 10 2 2 −9 −1 −5 1 1 0 − 13 − 13 13 5 1 1 1 −11 0 −5 1 0 1 − 13 13 − 13 −5§dO2Ý ⇒ 5 −29 −2 −15 3 0 0 0 0 0 4 −31 −1 −15 3 0 0 0 0 0 2 11 10 13 13 13 1 1 5 C − − 13 13 13 ¾ §|) + x3 + x4 0 1 0 S Ø 0 0 1 ( K 1 6 ( 8 ) Ê !( K10© ©) ® A ´ m × n Ý §P A = α1 α2 · · · αn ,Ù ¥ α1 , · · · , αn ´ A þ|§ T ´?¿ m ÛÉ ¿P T A = β1 β2 · · · βn " {i1 , · · · , ik } ⊂ {1, · · · , n} ´?¿I8§y² αi1 ,· · · , αik 5' = βi1 ,· · · , βik 5'" 8! ( K10© ©) XJ f (x) = an xn + · · · + a1 x + a0 ∈ K [x]§ §KP f (A) = an An + · · · + a1 A + a0 In §Ù¥ In ü AKþn "yõª f (x) Ú g (x) K þ üpõª"y²µàg5§|f (A) g (A) X = 0 )m V ´àg5§|f (A) X = 0 )m V1 g (A) X = 0 )m V2 Ú, =y V = V1 ⊕ V2 " 1 7 ( 8 ) Ô !( K10© ©) XJ A ´ m × n Ý §β1 , β2 ´ü½þ" y²§| AX = β1 AX = β2 Ók) " ) e = (A β1 β2 ) ´ m × (n + 2) ©¬Ý A e Ù¥ = R(A) = R(A), ( C ¾ S Ø K 1 8 ( 8 ) l ! ( K 10© ©) é ²µ? A§XJ A2 = A§ K¡ A Ý þL«ÛÉÝ Ý 1 9 ( 8 ) ¦È" "y