《高等数学》(理工)2018版培养方案.pdf
18 一、课程名称 高等数学(理工类) 二、课程信息表 课程资源 课程 性质 适用对 象 基准 学分 基准 学时 高等数学理工 必修 理工专 业生源 6.75 选修 大三需 专转本 学生 专转本班(高 数后续课程) 学时结构 理 实 开课学 期 备注 理 论 实 践 108 104 4 1、2 ,民族生独 立成班 136 112 24 4、5 学习成绩 前 15%学生 三、课程描述 高等数学是一门十分重要的理工科基础理论课。它的主要研究 对象为实变实值函数,尤其是连续的实变实值函数。本课程包括的主 要内容有:一元函数的极限、连续、微分、积分,及线性代数等。 通过本课程的学习,使学生系统地获得一元函数微积分等基本 知识和基本理论;本课程重点学习一元函数、极限、导数、积分(不 定积分、定积分)、线性代数并注重培养学生熟练地运算能力和较强 的抽象思维能力﹑逻辑推理能力﹑几何直观和空间想象能力,从而使 学生学会利用数学知识去分析和解决一些工科、几何﹑物理、经济、 管理等方面的实际问题,为学习后续课程和进一步扩大数学知识奠定 必要的数学基础。 四、课程目标 通过本课程的学习,使学生达到下列目标: 了解高等数学的系统知识,熟练掌握基本的演算和论证技能, 逐步提高数学抽象思维和逻辑推理能力,初步掌握用数学方法解决实 际应用问题。培养学生良好的综合素质:具有灵活应变的能力;具有 1 严谨、稳重、扎实的行为习惯;具有宽容大度、耐心、细致的心理品 质;具有不断探索、锐意进取的思想意识以及团结协作的团队精神, 为进一步学习后继课程打下基础。 五、教学目标 1.知识目标 内容 知识目标 (1)进行准确、灵活、快速的一元函数极限、导数、积分的基 本计算; (2)运用所学知识分析和解决复杂的实际问题:运用导数解决 高等数学理工 生活中的极值与最值问题;运用微分求近似值;运用定积分解决不规 则图形的面积的计算、几何体体积的计算、变力做功的计算以及一些 常见的经济问题的计算; (3)利用所学线性代数的知识解决工程计算的问题。 (1)掌握函数微积分的基本概念、性质、定理、结论等; 民族班 (2)进行准确的极限、导数、积分的基本计算及应用。 (1)掌握函数微积分的基本概念、性质、定理、结论等; 企业班 (2)进行准确的极限、导数、积分的基本计算及应用。 (1)进行准确、灵活、快速的一元和二元函数极限、导数(偏 导数) 、积分(二重积分) 、微分方程、无穷级数的计算; (2)运用所学知识分析和解决复杂的实际问题:运用导数解决 专转本班 生活中的极值与最值问题;运用微分求近似值;运用定积分解决不规 则图形的面积的计算、几何体体积的计算、变力做功的计算以及一些 常见的经济问题的计算;运用二重定积分解决不规则立体的体积、质 量的计算; (3)通过 17 周的专项培训,使我校专转本通过率有明显提高。 2.能力目标 内容 能力目标 (1)使学生了解数学思维的基本模式,并掌握常见的数学思想 方法,培养学生具有抽象概括问题的能力以及一定的逻辑推理能力、 高等数学理工 培养和提升学生综合运用所学知识分析和解决实践问题的能力; (2)培养和提升学生根据现象分析问题本质的能力、细致的观 察能力、准确的判断能力; 2 (3)提升学生的自学能力以及合作学习的能力; (4)使学生具有根据需要适时地自我更新知识和更新技术的能 力。 使学生了解数学思维的基本模式,并掌握常见的数学思想方法, 民族班 企业班 培养学生具有抽象概括问题的能力以及一定的逻辑推理能力、培养和 提升学生综合运用所学知识分析和解决实践问题的能力。 (1)使学生了解数学思维的模式,并掌握常见的数学思想方法, 培养学生具有抽象概括问题的能力以及一定的逻辑推理能力、培养和 提升学生综合运用所学知识分析和解决实践问题的能力; (2)培养和提升学生根据现象分析问题本质的能力、细致的观察 专转本班 能力、准确的判断能力; (3)提升学生的自学能力以及合作学习的能力; (4)使学生具有根据需要适时地自我更新知识和更新技术的能 力。 3.素质目标 内容 素质目标 (1)提升自我控制能力; (2)培养质量意识、工程规范意识、严谨的学风——充分执行、 重复应用、准确遵守(言行一致) ; 高等数学理工 (3)培养实用技能(学以致用) , 通过对理论知识的学习,要求 学生能将所学应用到具体的生活中解决实际的问题,做到“学中做, 做中学”,学以致用; (4)培养团队精神——组织沟通(同心协力) ; (5)培养良好的心理素质——不怕挫折,勇于进取。 (1)提升自我控制能力; (2)培养质量意识、工程规范意识、严谨的学风——充分执行、 重复应用、准确遵守(言行一致) , 在执行过程中,认真听候命令、无选择性的执行、不违犯制度和 民族班 企业班 流程;爱岗敬业,工作勤奋踏实,为企(事)业坚持不懈地努力工作, 认真负责,一丝不苟; (3)培养团队精神——组织沟通(同心协力) ; (4)培养良好的心理素质——不怕挫折,勇于进取。 (1)提升自我控制能力; (2)培养质量意识、工程规范意识、严谨的学风——充分执行、 3 重复应用、准确遵守(言行一致) , 在执行过程中,认真听候命令、无选择性的执行、不违犯制度和 流程;爱岗敬业,工作勤奋踏实,为企(事)业坚持不懈地努力工作, 认真负责,一丝不苟; (3)培养实用技能(学以致用) , 通过对理论知识的学习,要求 学生能将所学应用到具体的生活中解决实际的问题,做到“学中做, 做中学”,学以致用。 (1)培养实用技能(学以致用) , 通过对理论知识的学习,要求 学生能将所学应用到具体的生活中解决实际的问题,做到“学中做, 专转本班 做中学”,学以致用; (2)培养团队精神——组织沟通(同心协力) ; (3)培养良好的心理素质——不怕挫折,勇于进取。 六、考核及学分要求 1.考核说明 (1)本课程考核方式分考试、考查两种。考试按百分制总评计 分;考查按总评分五个等级:优秀(90-100 分)、良好(80-89 分) 、 中等(70-79 分)、及格(60-69 分)、不及格(60 分以下) 。 (2)本课程过程考核采用“N+1+1”考核方式: “N”表示在教 学进程中过程考核的次数(35%),包括作业情况、课堂表现、考勤记 录、辅导答疑情况等; “1”分别表示课堂笔记(5%)以及期末全校统 一考试(60%)。 期末考试占总成绩 课堂笔记 课程过程考核占总成绩比例(35%) (教考分离) 考试形式: 比例(60%) 闭卷 占总成绩 比例(5%) 平时作业(测试) 课堂表现 15 15 辅导答疑 5 笔试 5 60 满分:100 (3)过程考核中的“N”,本课程取“N 3”,具体安排如下:各 任课教师在本学期的教学过程中,在按照《高等数学》课程教学大纲 的要求授课的同时,至少安排 2 次单元或阶段性的笔试测试(具体考 试内容及试题题型由任课教师自定);另外 1 次任课教师可根据教学 4 内容采取较灵活的考核形式,如:综合报告、读书笔记、课程论文、 口试(面试) 、课堂提问等,也可仍采用闭卷笔试的方式。 (4)本课程结业成绩低于 60 分的学生按学校有关规定补考或重 修。 (5)注意事项: ①无论是闭卷笔试还是其它考核形式,都须有实际考核内容和确 定的考核方案。考核的内容应尽量覆盖教学大纲中所要求的教学重 点。 ②过程考核成绩的记载采用百分制,每次过程考核成绩所占的总 分比例由任课教师根据各次考核份量和难度自定。 ③课程结束后,请每位老师按班级分别将每次过程考核的原始材 料整理好备查。凡采用笔试的试卷均应有参考答案和评分标准;采用 口试(面试)的考核,要有题目和评分标准;对于其他过程考核形式, 要有明确的任务和要求,要有相关过程记录和对学生情况的文字评 价。 ④“N+1+1”考核方案应在每位任课老师的教案上要有具体的体 现。教案上要有考核的形式及相应的考核内容。如: 考核一 :形式:闭卷笔试; 内容:函数与极限 ; 所占分 内容:导数及其应用; 所占分 值:10% ; 考核二: 形式:口试; 值:15% 。 2.学分要求 课程名称 课程模块 课程难度系数 学分要求 高等数学 理工类 1 6.75 1 6.75 企业、民族 班 5 七、课程设置按学期安排表 课程代码 课程名称 课程学时 课程学分 总学时 总学分 108 6.75 108 6.75 第一学期 高等数学理工类 60 3.75 企业、民族班 60 3.75 第二学期 高等数学理工 48 3 企业、民族班 48 3 八、实施说明 1.本课程在第一学期和第二学期开设,民族、企业等其他生源独 立成班。 2.本方案适用于理工类专业学生。 6