PDF文库 - 千万精品文档,你想要的都能搜到,下载即用。

第十讲 动态最优问题求解:(III....pdf

Damn couples20 页 750.854 KB下载文档
第十讲 动态最优问题求解:(III....pdf第十讲 动态最优问题求解:(III....pdf第十讲 动态最优问题求解:(III....pdf第十讲 动态最优问题求解:(III....pdf第十讲 动态最优问题求解:(III....pdf第十讲 动态最优问题求解:(III....pdf
当前文档共20页 2.88
下载后继续阅读

第十讲 动态最优问题求解:(III....pdf

1›ù Ä •`¯K¦)µ £III¤ Ä 5y •% E ŒÆ²LÆ •% (E ŒÆ²LÆ ) êþ²LÆ£1›ù¤ 1 / 20 ù̇SN 1. Ä 5yÄ 1.1 Ä Vg g޵48¦) 1.2 ¯K«~ 1.3 -‡Vg 2. (½5Ä 5yµ-‡½n†¦)•{ 2.1 •`z n 2.2 Ø ½n N 2.3 dмêS“ 3. ‘ÅÄ 3.1 •`z 5yµ-‡½n†¦)•{ nÚdмêS“ 3.2 dмêÚüѼê 4. lÑÀJÄ •% (E ŒÆ²LÆ ) 5Ÿ½n 5y£Discrete Choice DP¤ êþ²LÆ£1›ù¤ 2 / 20 1. Ä 5yÄ Vg 1.1 Ä g޵48¦) Ä 5y Ä gŽ I ·‚^.‚KF•{Ú•`›› •ŒŠ n£maximum principle¤5©ÛÄ •`¯Kž§Ø%óä´'uS)Cþ ˜ ^‡§ )CþlÑ!¹k )‘ÅCþ§½•3üÑ51• d·‚I‡•˜„z þã•{éJÿÐ E, S Ä •`¯K§Ï ¦)•{" I Rust(2008): Dynamic programming has enabled economists to formulate and solve a huge variety of problems involving sequential decision making under uncertainty, and as a result it is now widely regarded as the single most important tool in economics. I Bellman(1957)JÑ Ä 5y •`z n£the principle of optimality¤ §Ø %gŽ´48Ž{£recursive algorithm¤µAn optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute and optimal policy with regard to the state resulting from the first decision. •% (E ŒÆ²LÆ ) êþ²LÆ£1›ù¤ 3 / 20 1. Ä 5yÄ ~1µ•á´» lA E z˜Ú Vg 1.2 ¯K«~ _•¦)£backward induction¤ ´§Xmã ¤«§1 t Ú1i ‡!: ˆE •á´»•Ý©O•µ V4 (E) = 0 V3 (Di ) = min [l (Di , E) + V4 (E)] V2 (Ci ) = min [l (Ci , Dj ) + V3 (Dj )] V1 (Bi ) = min [l (Bi , Cj ) + V2 (Cj )] V0 (A) = min [l (A, Bj ) + V1 (Bj )] = 19 þãL§Œ±L«•_•¦) 48úªµ ã¡5 µzÝz‰/Ä 5y0c^" Vt (i) = min[l (i, j) + Vt+1 (j)] •% (E ŒÆ²LÆ ) êþ²LÆ£1›ù¤ 4 / 20 1. Ä 5yÄ Vg 1.2 ¯K«~ ~2µüÏ)·±Ï;O¯K _•¦) max ln c1 + β ln c2 s.t.k1 = w + Rk0 − c1 k2 = w + Rk1 − c2 = 0 I T=2µc2 = w + Rk1 §V2 (k1 ) = max ln (w + Rk1 ) I T=1µ V1 (k0 ) = max [ln c1 + βV2 (k1 )] = max [ln c1 + β ln (w + R (w + Rk0 − c1 ))] 1+R R 1 (k0 ) d˜ ^‡ ∂V∂c = 0 k c1 = φ1 w + φ2 k0 £Ù¥µφ1 = (1+β)R , φ2 = 1+β ¤ § 1 “\Œ µ V1 (k0 ) = (1 + β) ln (φ1 w + φ2 k0 ) + β ln (βR) •% (E ŒÆ²LÆ ) êþ²LÆ£1›ù¤ 5 / 20 1. Ä 5yÄ Vg 1.2 ¯K«~ ~3µ(½5•`O•¯K max ∞ P β t ln ct t=0 s.t. kt+1 = zktα − ct k0 = 1, lim β t u0 (ct ) kt = 0 t→∞ r8I¼êP•ÏÐ] ¼ê V (k0 ) = ln c0 + β ln c1 + ... = ln c0 + βV (k1 )§± daí§l?¿ t = 0, 1, 2... m©kµ V (kt ) = max [ln ct + βV (kt+1 )] ßÿ V (kt ) = θ0 + θ1 ln kt §Kµ V (kt+1 ) = θ0 + θ1 ln kt+1 = θ0 + θ1 ln(zktα − ct ) zkα t d˜ ^‡ ∂V∂c(kt t ) = 0 k ct = 1+βθ "“\dмê§^–½Xê{Œ 1 µ V (kt ) = θ0 + θ1 ln kt , ct = (1 − αβ)zktα , kt+1 = αβzktα ln(αβ) 1 α Ù¥µθ0 = 1−β [ ln z+αβ + ln(1 − αβ)]!θ1 = 1−αβ " 1−αβ •% (E ŒÆ²LÆ ) êþ²LÆ£1›ù¤ 6 / 20 1. Ä 5yÄ Vg 1.2 ¯K«~ ~4µ‘Å5•`O•¯K max E0 [ ∞ P β t ln ct ] t=0 s.t. kt+1 = zt ktα − ct k0 = 1, lim β t u0 (ct ) kt = 0 t→∞ ln zt = ρ ln zt−1 + εt , εt *N (0, σ 2 ) t = 0, 1, 2... ž§aq/½Âµ V (kt , zt ) = max {ln ct + βEt [V (kt+1 , zt+1 )]} ßÿ V (kt , zt ) = θ0 + θ1 ln kt + θ2 ln zt §Ó |^˜ ^‡Ú–½Xê{Œ µ V (kt , zt ) = θ0 + θ1 ln kt + θ2 ln zt ct = (1 − αβ)zt ktα , kt+1 = αβzt ktα ln(αβ) α 1 1 Ù¥µθ0 = 1−β [ αβ1−αβ + ln(1 − αβ)]!θ1 = 1−αβ !θ2 = (1−ρβ)(1−αβ) •% (E ŒÆ²LÆ ) êþ²LÆ£1›ù¤ 7 / 20 1. Ä 5yÄ Vg 1.3 -‡Vg -‡Vg I G Cþ£state variable¤st = (xt , zt )§XS) ] •þ! ) Eâ À¶ I ››Cþ£control variable¤ut §XëY ž¤ûü!lÑ ´Äë\ó Š ÀJ ¶ I £=Ϥ£ ¼ê£instantaneous payoff function¤F (st , ut )§Xz˜Ï ^¼ê!|d¼ê ¶ I 8I¼ê£objective function¤½dмê£value function¤V (st )§X o ^!o|d ¶ I £•`¤üѼê£policy function¤u∗ t = argmaxV (st )§X•`ž¤û ü!•`Ý]üÑ " •% (E ŒÆ²LÆ ) êþ²LÆ£1›ù¤ 8 / 20 1. Ä 5yÄ Vg 1.3 -‡Vg -‡Vg I S)CþS /¤ {¤•þ£history¤µ Ht−1 = (s1 , u1 , s2 , u2 , ...st−1 , ut−1 ) ˜„b½žmS äkê ‰Å5Ÿ§{¤•þ¥ò•kþ˜Ï Cþ (st−1 , ut−1 ) ¬K• ϧl I š˜ I G ¦¯K ©ÛŒŒ{z" Cþ8Ü st ∈ S(Ht−1 )§ ¤^‡•)µ S)G Cþ =£•§£transfer function¤xt = G(st−1 , ut−1 )§ XýŽ å•§ I )G Cþ ^‡VÇ£conditional probability¤ §Xê ‰Åó =£VÇÝ £transition matrix¤P (zt |zt−1 ) I š˜ ûüCþ å8£constraint set¤ut ∈ U(st )§Xž¤ ct ∈ (0, zt ktα )"U ´lG Cþ «m ››Cþ ¢ŠN ½éA8Ü£a set-valued mapping or a correspondence¤ " •% (E ŒÆ²LÆ ) êþ²LÆ£1›ù¤ 9 / 20 2. (½5Ä 5yµ-‡½n†¦)•{ •`z 2.1 •`z n n£Principle of optimality¤ ‰½Ð©G x0 §Ä •`z¯KŒ±Lã•S ûü¯K£sequential problem, SP¤µ V ∗ (x0 ) = sup ∞ P {ut }∞ t=0 t=0 β t F (xt , ut ) s.t. xt+1 ∈ X(xt , ut ), ut ∈ U(xt ) •Œ± • ù•§£Bellman equation¤¤£ã •§ûü¯K£functional problem, FP¤£ å^‡ØC§t = 0, 1, ...¤ µ V (xt ) = sup {F (xt , ut ) + βV (xt+1 )} ut b½ V ∗ (s0 ) •3…k•§Kµ ù•§¤½Â I I •3÷v dмê£value function¤V (xt ) •3¶ ù•§ •`üѧ=•3üѼê£policy function¤ µ u∗t = argmaxV (xt )¶ I V ∗ (x0 ) = V (x0 )§SP†FP d§::•` •% êþ²LÆ£1›ù¤ (E ŒÆ²LÆ ) yS •`" 10 / 20 2. (½5Ä 5yµ-‡½n†¦)•{ Ä 5y•{ 2.1 •`z n d5µ±•`O•¯K•~ •`O•¯K ù•§•µ V (kt ) = max [ln ct + βV (kt+1 )] ct ŠâýŽ å^‡ kt+1 = zktα − ct §þª duµ V (kt ) = max [ln (zktα − kt+1 ) + βV (kt+1 )] kt+1 dŠ¼êŒ I ˜ žkµ ^‡£FOC¤µ ∂V (kt ) ∂V (kt+1 ) ∂V (kt+1 ) −1 1 = +β =0⇔ =β ∂kt+1 ct ∂kt+1 ct ∂kt+1 I •ä^‡£envelope condition¤µ ∂V (kt ) zαktα−1 = ∂kt ct éá=Œ î.•§µ α−1 ct+1 = βzαkt+1 ct •% (E ŒÆ²LÆ ) êþ²LÆ£1›ù¤ 11 / 20 2. (½5Ä 5yµ-‡½n†¦)•{ Ø N 2.2 Ø N ½n ½n£Theorem of Contraction Mapping¤ XJ (M, d) ´˜‡ Ýþ˜m1 §T : M → M ´˜‡ I T 3 M ¥k•˜ ØÄ: V = T (V )¶ •β Ø N 2 §Kµ I é?¿ V (0) ∈ M Ú n = 0, 1...µ d(T n (V (0) ), V ) ≤ β n d(V (0) , V ) ã¡5 µStocky and Lucas(1999)" 1 Ýþ˜m(M, d) ´˜‡½Â Ýþ£ål¼ê¤d 8Ü M§é ∀x, y, z ∈ M kµ £1¤d(x, y) ≥ 0§ x = y ž•"¶£2¤d(x, y) = d(y, x)¶ £3¤d(x, z) ≤ d(x, y) + d(y, z)"XJ S ¥z‡…ÜS ƒ lim xn = x ∈ M§K¡(M, d) • n→∞ Y¼ê V : S → R ¤ ÑÂñ …= M ¥ ˜‡ Ýþ˜m£complete metric space¤"éu·‚'% ¯K§3¤kk.ë 8Ü V þ½Âþ(.‰ê kV k = sup |V (s)|§K (V, k·k) ´˜‡ Ýþ˜m" s∈S 2 ‰½Ýþ˜m (M, d) Ú T : M → M§e•3 β ∈ (0, 1) é ∀x, y ∈ M k d(T x, T y) ≤ βd(x, y)§K¡ T ´ ˜‡ • β •% Ø N " ù•§ m>ҽ ˜‡ • β (E ŒÆ²LÆ ) Ø N " êþ²LÆ£1›ù¤ 12 / 20 2. (½5Ä 5yµ-‡½n†¦)•{ 2.3 dмêS“ dмêS“£value function iteration§VFI¤ I Ž{µ Cþ 1. n = 0§3G X (n) ‚: {xi }N (xi )¶ i=1 þédмê‰Ð©ßÿ V 2. 3 ‡½Â• x ∈ [xmin , xmax ] þ[ÜÑëY dмê V̂ (n) (x)¶ X 3. 3‚: {xi }N i=1 þ¦)µ h i V (n+1) (xi,t ) = max F (xi,t , ut ) + β V̂ (n) (xt+1 ) ut ä´Äk V (n+1) (xi ) − V (n) (xi ) < ε"´µV = V (n+1) ¶Äµ 4. n = n + 1§-EÚ½2*4" I µdµ I `:´ŠâØ N ÿm©§Œ± I ":Ø ½n§•‡¦ V (xt ) k.ëY§ Û•`)¶ Âñ„Ýú£± β • ‡Ý O\ …l?¿Ð©ß Ø N ׄþ,"'XkK‡G Ò‡3 N X = N K ¤± §OŽþò‘G Cþ!z‡G ‡‚:þ|¢ V §ÏdóŠþò‘K Cþ Cþ N‡‚:§ O\¥AÛ?ê O•§Ñy‘ê/J£curse of dimensionality¤" •% (E ŒÆ²LÆ ) êþ²LÆ£1›ù¤ 13 / 20 3. ‘ÅÄ 5yµ-‡½n†¦)•{ 3.1 •`z nÚdмêS“ ¯K£ã ‰½Ð©G s0 = (x0 , z0 ) Úäkê Cþ zt §‘ÅÄ •`¯K£ã•µ ∗ V (s0 ) = ‰Å5Ÿ P (zt |Ht−1 ) = P (zt |zt−1 ) sup E0 {ut }∞ t=0 ∞ P t ‘Å  β F (st , ut ) t=0 s.t. xt+1 = G(st , ut ), ut ∈ U(st ) ò=£•§ xt+1 = G(st , ut ) ÚŒ18 Ä å ut ∈ U(st ) Ü¿• xt+1 ∈ G(st )"‘Å 5y¯K£ã•µ V (st ) = sup {F (st , ut ) + βE[V (st+1 ) |st ]} ut s.t. xt+1 ∈ G(st ), (t = 0, 1, 2...) •% (E ŒÆ²LÆ ) êþ²LÆ£1›ù¤ 14 / 20 3. ‘ÅÄ 5yµ-‡½n†¦)•{ •`z éu˜ 3.1 •`z nÚdмêS“ n ê ‰Åó zt ∈ Z = {Z1 , Z2 ...ZN }§b½µ 1. V ∗ (s0 ) •3…k•¶ 2. £ ¼ê F (st , ut ) ëY¶ 3. S)G Cþ8Ü X • RK ;f8§…¢ŠN £½éA8ܤ G : S → X š˜!;Š…ëY£non-empty compact-valued and continuous¤ éu˜„ ê ‰Å‘ÅL§ zt ∈ Z ⊆ RL §O\b½µ 4. zt äk¤V5Ÿ£Feller property¤§=é?¿k.ëY¼ê V (·, zt )§ E[V (·, zt+1 )|zt ] •´ zt k.ëY¼ê Šâ Acemoglu(2009)§kµ I V (st ) •3!•˜§…k.ëY¶ I u∗t = argmaxV (st ) •3¶ I V ∗ (s0 ) = V (s0 )" •% (E ŒÆ²LÆ ) êþ²LÆ£1›ù¤ 15 / 20 3. ‘ÅÄ 5yµ-‡½n†¦)•{ 3.1 •`z nÚdмêS“ dмêS“ 1. ò‘ÅL§ zt lÑz• N Z ‡‚:§OŽ=£Ý µ PN Z×N Z = [pij ], pij = Pr (zt+1 = Zj |zt = Zi ) 2. n = 0§3 N S = N X × N Z ‡G Cþ ‚: si = (xi , zi ) þßÿdŠ¼ê Š V (n) (si )¶ 3. ‰½ zi §3 X þ[ÜÑëY dмê V̂ (n) (x, zi )§ƒAkµ E[V̂ (n) (xt+1 , zj,t+1 ) |zit ] = V̂ (n) × P T 4. 3‚: si þ¦)µ n o V (n+1) (sit ) = max F (sit , ut ) + βE[V̂ (n) (xt+1 , zj,t+1 ) |zit ] ut ä´Äk V (n+1) (si ) − V (n) (si ) < ε"´µV = V (n+1) ¶Äµn = n + 1§- 5. EÚ½3*5" •% (E ŒÆ²LÆ ) êþ²LÆ£1›ù¤ 16 / 20 3. ‘ÅÄ 5yµ-‡½n†¦)•{ 3.2 dмêÚüѼê 5Ÿ½n dмêÚüѼê 5Ÿ½n I 3b½1*4 x Ä:þ§O\b½5µF (s, u) ´ u î‚]¼ê§éA G(x, z) ´ à8£convex in x¤§Kdмê V (s) •î‚]¼ê§üѼê u∗ •˜… é x ëY" I 3b½1*4 Ä:þ§O\b½6µ‰½ z, u§F (x, z, u) ´ x î‚O¼ê§é 0 A G(x, z) é x üN£=éu x ≤ x k G(x, z) ⊆ G(x−, z)¤ § K V (x, z) ´ x î‚O¼ê" I 3b½1*5 Ä:þ§O\b½7µ‰½ z§F (x, z, u) 3 X × U SÜé x Ú u ∗ ëYŒ‡§Kéu x ∈ IntX, u ∈ IntU(s)§kµ Vx (x, z) = Fx (x, z, u∗ (x, z)) •% (E ŒÆ²LÆ ) êþ²LÆ£1›ù¤ 17 / 20 4. lÑÀJÄ 5y£Discrete Choice DP¤ lÑÀJÄ 5yµ±óŠ|¢¯K•~ éuóŠ|¢¯Kµ  V (x) = M ax •3,‡ó] x , β 1−β Z ∞ 0 V (x )dF x  0 0 ©.: x̃£cutting point¤ µ Z ∞   x < x̃ aø : V (x) = β V x0 dF x0 Z0 ∞   x̃ x = x̃ Ã É : V x0 dF x0 =β 1−β 0 x x > x̃ Øaø : V (x) = 1−β “\dŠ¼ê§²OŽ nŒ µ Z ∞ Z x̃ V (x) dF (x) = 0 •% (E ŒÆ²LÆ ) Z ∞ x̃ x dF (x) + dF (x) 1 − β 1 − β 0 x̃ Z ∞ x̃ x̃ x − x̃ = + dF (x) β (1 − β) 1−β 1−β Z ∞ x̃ β x̃= (x − x̃) dF (x) 1 − β x̃ êþ²LÆ£1›ù¤ 18 / 20 4. lÑÀJÄ 5y£Discrete Choice DP¤ óŠ|¢¯K β x̃ = 1−β Z ∞ I l²L¹Â5w§þª†>´ c \§=aø ó] Ŭ¤ ¶m>K´aø > SÂçü>ƒ ž´Ä†óŠ´Ã Ïd x̃ • 3ó]" ¡• I ‰½ëê β Úó] ~¼ê§ÏdŒ±)Ñ•˜ y 3ó]´ β O¼ê§ ©Ù¼ê§âU (E ŒÆ²LÆ ) É § ©Ù¼ê§dum>´ x̃ AÏ •% (x − x̃) dF (x) x̃ x̃"´ I‡b½˜ x̃ w«)" êþ²LÆ£1›ù¤ 19 / 20 ë•©z I Acemoglu, D. 2013: Introduction to Modern Economic Growth, Princeton University Press I L.L. ¿dA!T.J. ÷êdͧ2013µ 548÷*²LnØ£1 ‡¤6§ R ȧ¥I<¬ŒÆÑ‡ I N.L. d÷Ä!R.E. ©kd!E.C.ÊXdŽA§1999µ 5²LÄ {6§ •% ²éȧ (E ŒÆ²LÆ ) [÷ §‹ 48• ^Ì"§¥I ¬‰ÆÑ‡ êþ²LÆ£1›ù¤ 20 / 20

相关文章